

Année 2020/2021 N°

Thèse

Pour le

DOCTORAT EN MEDECINE

Diplôme d'État par

Clémence BERNARD

Née le 29/07/1990 à Limoges (87)

<u>TITRE :</u>

Développement et évaluation du « PNUT pentafecta » pour les patients atteints d'un carcinome urothélial des voies excrétrices de haut risque traités par néphro-urétérectomie totale

Présentée et soutenue publiquement le **29/10/2021** date devant un jury composé de :

<u>Président du Jury</u> : Professeur Franck BRUYÈRE, Urologie - Tours <u>Membres du Jury</u> :

Professeur Matthias BUCHLER, néphrologie, Faculté de Médecine – Tours Professeur Romain MATTHIEU, Urologie, Faculté de Médecine - Rennes

<u>Directeurs de thèse : Docteur Benjamin PRADERE, Urologie, Université de Médecine de</u> <u>Vienne, Autriche ; Dr Pierre BARON, Urologie, CCA, Faculté de Médecine - Tours</u>

01/09/2021

UNIVERSITE DE TOURS FACULTE DE MEDECINE DE TOURS

DOYEN Pr Patrice DIOT

VICE-DOYEN

Pr Henri MARRET

ASSESSEURS

Pr Denis ANGOULVANT, Pédagogie Pr Mathias BUCHLER, Relations internationales Pr Theodora BEJAN-ANGOULVANT, Moyens – relations avec l'Université Pr Clarisse DIBAO-DINA, Médecine générale Pr François MAILLOT, Formation Médicale Continue Pr Patrick VOURC'H, Recherche

RESPONSABLE ADMINISTRATIVE

Mme Fanny BOBLETER

DOYENS HONORAIRES

Pr Emile ARON (†) – *1962-1966* Directeur de l'Ecole de Médecine - 1947-1962 Pr Georges DESBUQUOIS (†) - *1966-1972* Pr André GOUAZE (†) - *1972-1994* Pr Jean-Claude ROLLAND – *1994-2004* Pr Dominique PERROTIN – *2004-2014*

PROFESSEURS EMERITES

Pr Daniel ALISON Pr Gilles BODY Pr Jacques CHANDENIER Pr Philippe COLOMBAT Pr Etienne DANQUECHIN-DORVAL Pr Pascal DUMONT Pr Dominique GOGA Pr Gérard LORETTE Pr Dominique PERROTIN Pr Roland QUENTIN

PROFESSEURS HONORAIRES

P. ANTHONIOZ – P. ARBEILLE – A. AUDURIER – A. AUTRET – P. BAGROS – P.BARDOS – C. BARTHELEMY – J.L. BAULIEU – C. BERGER – JC. BESNARD – P. BEUTTER – C. BONNARD – P. BONNET – P. BOUGNOUX – P. BURDIN – L. CASTELLANI – A. CHANTEPIE – B. CHARBONNIER – P. CHOUTET – T. CONSTANS – P. COSNAY – C. COUET – L. DE LA LANDE DE CALAN – J.P. FAUCHIER – F. FETISSOF – J. FUSCIARDI – P. GAILLARD – G. GINIES – A. GOUDEAU – J.L. GUILMOT – O. HAILLOT – N. HUTEN – M. JAN – J.P. LAMAGNERE – F. LAMISSE – Y. LANSON – O. LE FLOCH – Y. LEBRANCHU – E. LECA – P. LECOMTE – AM. LEHR-DRYLEWICZ – E. LEMARIE – G. LEROY – M. MARCHAND – C. MAURAGE – C. MERCIER – J. MOLINE – C. MORAINE – J.P. MUH – J. MURAT – H. NIVET – L. POURCELOT – P. RAYNAUD – D. RICHARD-LENOBLE – A. ROBIER – J.C. ROLLAND – D. ROYERE – A. SAINDELLE – E. SALIBA – J.J. SANTINI – D. SAUVAGE – D. SIRINELLI – J. WEILL

Faculté de Médecine – 10, boulevard Tonnellé – CS 73223 – 37032 TOURS Cedex 1 – Tél : 02.47.36.66.00 – www.med.univ-tours.fr

1

PROFESSEURS DES UNIVERSITES - PRATICIENS HOSPITALIERS

ANDRES Christian	
ANGOULVANT Denis	
APETOH Lionel	
	Chirurgie thoracique et cardiovasculaire
BABUTY Dominique	
BAKHOS David	
BALLON Nicolas	
BARILLOT Isabelle	
BARON Christophe	
BEJAN-ANGOULVANT Théodora	Pharmacologie clinique
	Chirurgie orthopédique et traumatologique
BERNARD Anne	
BERNARD Louis	Maladies infectieuses et maladies tropicales
BLANCHARD-LAUMONNIER Emmanuelle	
BLASCO Hélène	Biochimie et biologie moléculaire
BONNET-BRILHAULT Frédérique	
BOURGUIGNON Thierry	Chirurgie thoracique et cardiovasculaire
	Chirurgie orthopédique et traumatologique
BRUNEREAU Laurent	
BRUYERE Franck	
BUCHLER Matthias	
CALAIS Gilles	
CAMUS Vincent	Psychiatrie d'adultes
CORCIA Philippe	
COTTIER Jean-Philippe	
DE TOFFOL Bertrand	
DEQUIN Pierre-François	
DESOUBEAUX Guillaume	
DESTRIEUX Christophe	Anatomie
DIOT Patrice	
DU BOUEXIC de PINIEUX Gonzague	
	Endocrinologie, diabétologie, et nutrition
EL HAGE Wissam	
EHRMANN Stephan	
FAUCHIER Laurent	Cardiologie
	Chirurgie orthopédique et traumatologique
FOUGERE Bertrand	
FOUQUET Bernard	
FRANCOIS Patrick	
FROMONT-HANKARD Gaëlle	
GATAULT Philippe	Nephrologie Reatérialagia viralagia hygiàna haanitaliàna
	Bactériologie-virologie, hygiène hospitalière
GOUPILLE Philippe	
GRUEL Yves	
GUILLON Antoine	Biologie et médecine du développement et de la reproduction
GUYETANT Serge GYAN Emmanuel	Liémetelegie, transfusion
HALIMI Jean-Michel	
HALIMI Jean-Michel	
HERAULT Olivier	
HERBRETEAU Denis	
HOURIOUX Christophe	
IVANES Fabrice	
LABARTHE François	
	Anesthésiologie et réanimation chirurgicale, médecine d'urgence
LARDY Hubert	
LARIBI Saïd	
LARTIGUE Marie-Frédérique	
	Chirurgie maxillo-faciale et stomatologie
LECOMTE Thierry	Gastroentérologie, hépatologie
LESCANNE Emmanuel	Oto-rhino-larvngologie
LINASSIER Claude	
MACHET Laurent	
MAILLOT François	
-	
Faculte de Medecine – IU, boulevard Tonnelle – CS 732	23 – 37032 TOURS Cedex 1 – Tél : 02.47.36.66.00 – www.med.univ-tours.fr 2

MARCHAND-ADAM Sylvain MARRET Henri MARUANI Annabel MEREGHETTI Laurent MITANCHEZ Delphine MORINIERE Sylvain	Gynécologie-obstétrique Dermatologie-vénéréologie Bactériologie-virologie ; hygiène hospitalière Pédiatrie
MOUSSATA Driffa	, , , ,
MULLEMAN Denis	0
ODENT Thierry	
OUAISSI Mehdi	
OULDAMER Lobna	
PAINTAUD Gilles	Pharmacologie fondamentale, pharmacologie clinique
PATAT Frédéric	
PERROTIN Franck	Gynécologie-obstétrique
PISELLA Pierre-Jean	
PLANTIER Laurent	
	Anesthésiologie et réanimation, médecine d'urgence
ROINGEARD Philippe	
ROSSET Philippe	Chirurgie orthopédique et traumatologique
RUSCH Emmanuel	Epidémiologie, économie de la santé et prévention
SAINT-MARTIN Pauline	
SALAME Ephrem	
SAMIMI Mahtab	
SANTIAGO-RIBEIRO Maria	
THOMAS-CASTELNAU Pierre	
TOUTAIN Annick	
VAILLANT Loïc	8
VELUT Stéphane	
VOURC'H Patrick	
WATIER Hervé	
ZEMMOURA Ilyess	Neurochirurgie

PROFESSEUR DES UNIVERSITES DE MEDECINE GENERALE

DIBAO-DINA Clarisse LEBEAU Jean-Pierre

PROFESSEURS ASSOCIES

MALLET Donatien	Soins palliatifs
POTIER Alain	Médecine Générale
ROBERT Jean	Médecine Générale

PROFESSEUR CERTIFIE DU 2ND DEGRE

MC CARTHY Catherine.....Anglais

MAITRES DE CONFERENCES DES UNIVERSITES - PRATICIENS HOSPITALIERS

CARVAJAL-ALLEGRIA Guillermo CLEMENTY Nicolas DENIS Frédéric DOMELIER Anne-Sophie DUFOUR Diane ELKRIEF Laure	Chirurgie digestive Chirurgie infantile Cardiologie (CHRO) Psychiatrie d'adultes, addictologie Biostat., informatique médical et technologies de communication Rhumatologie (au 01/10/2021) Cardiologie Odontologie Odontologie Bactériologie-virologie, hygiène hospitalière Biophysique et médecine nucléaire Hépatologie – gastroentérologie
DUFOUR Diane	Biophysique et médecine nucléaire
FAVRAIS Géraldine FOUQUET-BERGEMER Anne-Marie GOUILLEUX Valérie	Pédiatrie Anatomie et cytologie pathologiques

Faculté de Médecine – 10, boulevard Tonnellé – CS 73223 – 37032 TOURS Cedex 1 – Tél : 02.47.36.66.00 – www.med.univ-tours.fr

GUILLON-GRAMMATICO Leslie HOARAU Cyrille	Epidémiologie, économie de la santé et prévention Immunologie
LE GUELLEC Chantal	Pharmacologie fondamentale, pharmacologie clinique
LEFORT Bruno	Pédiatrie
LEGRAS Antoine	Chirurgie thoracique
LEMAIGNEN Adrien	
MACHET Marie-Christine	Anatomie et cytologie pathologiques
MOREL Baptiste	Radiologie pédiatrique
PARE Arnaud	Chirurgie maxillo-faciale et stomatologie
PIVER Éric	Biochimie et biologie moléculaire
REROLLE Camille	
ROUMY Jérôme	
SAUTENET Bénédicte	
STANDLEY-MIQUELESTORENA Elodie	Anatomie et cytologie pathologiques
STEFIC Karl	Bactériologie
TERNANT David	Pharmacologie fondamentale, pharmacologie clinique
VUILLAUME-WINTER Marie-Laure	Génétique

MAITRES DE CONFERENCES DES UNIVERSITES

AGUILLON-HERNANDEZ NadiaN	leurosciences
NICOGLOU AntonineP	hilosophie – histoire des sciences et des techniques
PATIENT RomualdB	
RENOUX-JACQUET CécileN	lédecine Générale

MAITRES DE CONFERENCES ASSOCIES

BARBEAU Ludivine	Médecine	Générale
RUIZ Christophe	Médecine	Générale
SAMKO Boris	Médecine	Générale

CHERCHEURS INSERM - CNRS - INRAE

BOUAKAZ Ayache BRIARD Benoit CHALON Sylvie DE ROCQUIGNY Hugues ESCOFFRE Jean-Michel GILOT Philippe GOUILLEUX Fabrice GOMOT Marie HEUZE-VOURCH Nathalie KORKMAZ Brice LATINUS Marianne	Chargé de Recherche Inserm – UMR Inserm 1253 Directeur de Recherche Inserm – UMR Inserm 1253 Chargé de Recherche Inserm – UMR Inserm 1100 Directeur de Recherche Inserm – UMR Inserm 1253 Chargé de Recherche Inserm – UMR Inserm 1253 Chargé de Recherche Inserm – UMR Inserm 1253 Chargé de Recherche Inserm – UMR Inserm 1253 Directeur de Recherche Inserm – UMR Inserm 1253 Directeur de Recherche Inserm – UMR Inserm 1253 Chargé de Recherche Inserm – UMR Inserm 1253 Chargé de Recherche Inserm – UMR Inserm 1100 Chargé de Recherche Inserm – UMR Inserm 1100 Chargé de Recherche Inserm – UMR Inserm 1253 Chargé de Recherche Inserm – UMR Inserm 1253
LE MERREUR Julie	Chargé de Recherche Inserm - UMR Inserm 1253 Directrice de Recherche CNRS – UMR Inserm 1253 Directeur de Recherche Inserm – UMR Inserm 1259
MEUNIER Jean-Christophe PAGET Christophe RAOUL William SI TAHAR Mustapha SUREAU Camille	Chargé de Recherche Inserm – UMR Inserm 1259 Chargé de Recherche Inserm – UMR Inserm 1100 Chargé de Recherche Inserm – UMR CNRS 1069 Directeur de Recherche Inserm – UMR Inserm 1100 Directrice de Recherche émérite CNRS – UMR Inserm 1259 Chargée de Recherche Inserm – UMR Inserm 1253

CHARGES D'ENSEIGNEMENT

Pour l'Ecole d'Orthophonie	
DELORE Claire	Orthophoniste
GOUIN Jean-Marie	Praticien Hospitalier
Pour l'Ecole d'Orthoptie	
BOULNOIS Sandrine	Orthoptiste
SALAME Najwa	
Pour l'Ethique Médicale	
BIRMELE Béatrice	Praticien Hospitalier

4

SERMENT D'HIPPOCRATE

En présence des Maîtres de cette Faculté, de mes chers condisciples et selon la tradition d'Hippocrate, je promets et je jure d'être fidèle aux lois de l'honneur et de la probité dans l'exercice de la Médecine.

Je donnerai mes soins gratuits à l'indigent, et n'exigerai jamais un salaire au-dessus de mon travail.

Admis dans l'intérieur des maisons, mes yeux ne verront pas ce qui s'y passe, ma langue taira les secrets qui me seront confiés et mon état ne servira pas à corrompre les mœurs ni à favoriser le crime.

Respectueux et reconnaissant envers mes Maîtres, je rendrai à leurs enfants l'instruction que j'ai reçue de leurs pères.

Que les hommes m'accordent leur estime si je suis fidèle à mes promesses. Que je sois couvert d'opprobre et méprisé de mes confrères si j'y manque.

Table of contents

List of acronyms
Résumé9
Abstract10
Introduction11
Upper-Tract Urothelial Carcinoma: epidemiology and management
Rational13
Material and Methods14
Study population
Definition of the PNUT Pentafecta15
Management and follow-up16
Outcomes of interest
Statistical analysis
Results19
Patients characteristics19
Perioperative outcomes
PNUT Pentafecta validation
Pathologic outcomes:
Oncological Outcomes
Secondary objective
Discussion
Conclusion:
Annexes
Bibliography

List of acronyms

ASA score: American Society of Anesthesia BMI: Body Mass Index Cis: Carcinoma In Situ CT: computered tomodensitometry EAU: European Association of Urology ECOG: Eastern Cooperative Oncology Group IQR: Inter Quartile Range Mos: Months NUT: néphro-uréterectomie totale **OR:** Operating Room OS: Overall survival PV: pentafecta validated PNV: pentafecta not validated PNUT: Pentafecta NUT **RFS:** Recurrence-Free Survival RNU: Radical Nephro-Ureterectomy SD: Standard Deviation URS: Uretero-Renoscopy UTUC: Upper Tract Urothelial Carcinoma YAU: Young academic Urologists

Résumé

Contexte :

De nombreux outils ont été développés ces dernières années en onco-urologie avec pour but l'évaluation et l'optimisation de la prise en charge du patient. Pour la néphrourétérectomie totale (NUT) qui est le traitement de référence des tumeurs des voies excrétrices supérieures (TVES) de haut risque (HR), aucun outil d'évaluation n'a encore été proposé. Le but de cette étude était de proposer un pentafecta afin d'évaluer la qualité de la prise en charge chirurgicale des patients traités par NUT pour une TVES- HR.

Matériel et méthodes :

Il s'agit d'une étude rétrospective, multicentrique dans laquelle l'ensemble des patients atteints de TVES-HR et traités par NUT dans trois centres universitaires français entre 1998 et 2020 ont été inclus dans une base de données commune. Les patients avec un suivi de moins de 12 mois, de bas risque (critères EAU 2020) ou présentant trop de données manquantes étaient exclus. Après analyse systématique de la littérature, un consensus entre les membres d'un groupe d'experts internationaux (YAU urothelial carcinoma working group) a été réalisé pour valider le pentafecta (PNUT). Les critères validant le pentafecta étaient : absence de complication hématologique (transfusion périopératoire, évènement thromboembolique), absence de complication majeure (Clavien Dindo ≥3) dans les 3 mois, réalisation d'une collerette vésicale, absence de marge chirurgicale et absence récidive dans l'année suivant la NUT. Nous avons ensuite défini deux groupes de patients selon la validation du pentafecta, et évalué son impact sur les résultats oncologiques.

Résultats :

Parmi les 387 patients de la cohorte, 237 répondaient aux critères d'inclusion dont 67 (28%) présentaient un pentafecta validé (PV). Les caractéristiques préopératoires entre les groupes étaient similaires. Avec un suivi médian de 51 mois, la survie globale à 5 ans était supérieure chez les patients présentant un PV 80.5% (IC95% 70.7-91.7) vs 46.5% (IC95% : 38.3-56.5) pour PNV. De la même manière, la survie sans récidive à 5 ans était de 76.1% (IC 95% : 65.3-88.6) vs 50.4% (IC95% : 41.8-60.7) dans les groups PV et PNV respectivement (p< 0.0001), on observait également une meilleure survie sans métastase à 5 ans (p<0.05). Nous n'avons pas retrouvé dans notre population de facteurs prédictifs préopératoires d'échec du pentafecta (tous les p> 0,05).

Conclusion :

Le pentafecta que nous avons proposé a montré que sa validation avait un impact statistiquement significatif sur les résultats oncologiques à long terme pour la survie sans récidive et la survie globale. Il pourrait être utilisé à l'avenir pour évaluer la prise en charge des patients atteints de TVES-HR. Néanmoins, une validation externe sur une plus grande population reste nécessaire pour confirmer son applicabilité.

Mots clés : Néphro-urétérectomie totale, carcinome urothélial des voies excrétrices supérieures, pentafecta

Abstract

Context:

Many tools have been developed in recent years in onco-urology with the aim of evaluating and optimizing patient management. For Radical nephro-ureterectomy (RNU), which is the reference treatment for high-risk (HR) upper tract urothelial carcinoma (UTUC), no assessment tool has yet been proposed. The aim of this study was to propose a pentafecta to assess the quality of surgical management of patients treated with RNU for high-risk UTUC (HR-UTUC).

Materials and Methods:

This was a retrospective, multicenter study in which all patients with HR-UTUC Patients with a follow-up of less than 12 months, low risk (EAU 2020 criterion) or with too much missing data were excluded. After a systematic review of the literature, a consensus among members of an international expert group (YAU urothelial carcinoma working group) was reached to validate the pentafecta (PNUT). The criteria validating the pentafecta were: absence of hematological complication (perioperative transfusion, thromboembolic event), absence of major complication (Clavien Dindo \geq 3) within 3 months, realization of a bladder cuff, absence of surgical margin and absence of recurrence within one year after the RNU. We then defined two groups of patients according to the validation of pentafecta and evaluated its impact on oncological outcomes.

Results:

Of the 387 patients in the cohort, 237 met the inclusion criteria, of which 67 (28%) had a validated pentafecta (PV). Preoperative characteristics between groups were similar. With a median follow-up of 51 months, the 5-year overall survival was superior in patients with PV 80.5% (CI95% 70.7-91.7) vs 46.5% (CI95%: 38.3-56.5) for PNV. Similarly, the 5-year recurrence-free survival was 76.1% (95% CI: 65.3-88.6) vs 50.4% (95% CI: 41.8-60.7) in the PV and PNV groups respectively (p<0.0001), and there was also a better 5-year metastasis-free survival (p<0.05). We did not find in our population any predictive factors of pentafecta failure (all p > 0.05).

Conclusion:

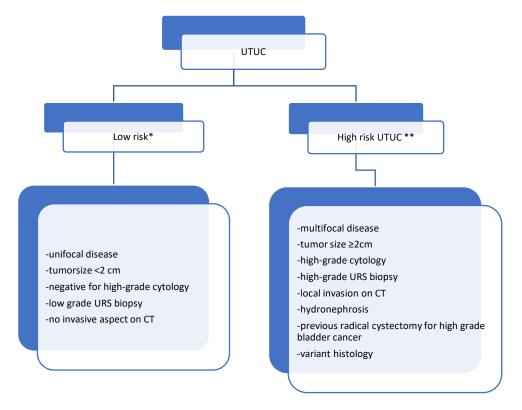
Our proposed pentafecta has been shown to have a statistically significant impact on longterm oncologic outcomes for recurrence-free survival and overall survival through validation. It could be used in the future to evaluate the management of patients with HR-STV. Nevertheless, external validation in a larger population is still needed to confirm its applicability.

Key words: Radical nephro-ureterectomy, upper-tract urothelial carcinoma, pentafecta

Introduction

Upper-Tract Urothelial Carcinoma: epidemiology and management

Upper tract urothelial carcinoma (UTUC) is considered as a rare disease accounting for less than 10% of all the urothelial carcinomas (1,2), its incidence is estimated around 2 per 100 000 inhabitants in western countries, increasing in recent years probably related to increased surveillance of patients with a history of bladder tumor(3,4) with a peak incidence in elderly men between 70-90 years of age.(5–7)


It has one of the poorest prognoses among uro-oncologic malignancies, mainly due to its late diagnosis at an invasive tumor stage. Indeed, approximately two-thirds of the patients present with locally advanced disease, and 7% with primary metastasis(3,8,9). It presents a relatively high recurrence rate (>30% at 5 years). The 5-year cancer specific survival (CSS) of advanced UTUC is <50% for tumors \geq pT2 and <10% for those with pT4 stage(10–12).

UTUC may affect the entire urothelium between the renal cavities and the ureteral ending. It is most often pyelocaliceal (40%) and less often ureteral or multifocal (1). The diagnosis is frequently incidental diagnosed on tomodensitometry exam, but can also be symptomatic (renal colic, hematuria) which is more likely to occur at an advanced stage of the disease.

Patients with localized UTUC are stratified in high or low risk of progression and recurrence thanks to pre-operative prognostics variables (1,13,14) *Figure 1 et 2*. Initially used in patients with imperative indications such as multiple comorbidities, impaired renal function, solitary kidneys, or bilateral tumors, approaches using endoscopic kidney-sparing surgery (KSS) or segmental ureterectomy have become an accepted curative alternative in patients with low-risk features(15). High-risk disease is defined as having any of the following characteristics: hydronephrosis, tumor size more than 2 cm, high-grade cytology, high-grade biopsy, multifocal disease, previous radical cystectomy for bladder cancer and variant histology(1).

11

Radical nephroureterectomy (RNU) with bladder cuff excision, with or without lymph node dissection, is the standard of care for high-risk UTUC for non-metastatic patients (1,16,17).

CT= computed tomography; URS = ureteroscopy; UTUC= upper urinary tract urothelial carcinoma *all these factors need to be present **any of these factors need to be present

Figure 1: Patients risk stratification for Upper Tract Urothelial Carcinoma based on pretherapeutic criteria.

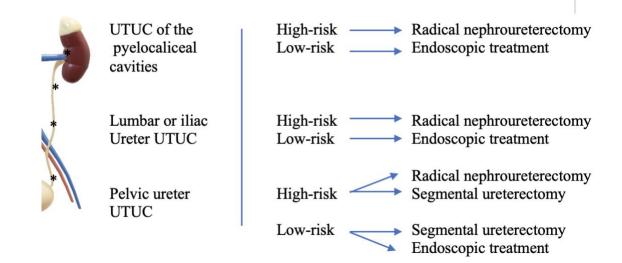


Figure 2: Therapeutic strategy based on risk-stratification

Rational

In the last decade, the management of patients with high risk UTUC has been highly investigated. Indeed, not only the diagnostic step with improvement in imaging(3), but also the surgery itself (implementation of bladder cuff excision (18,19), impact of surgical approach, role of lymph node dissection (20,21)) as well as the perioperative systemic therapy have been debated and improved (1,15,18,19,21–24). In addition, several predictive tools have been developed for the management of UTUC(12,13,25–28) refining patient selection criteria to improve precision medicine and thus patient care.

Lately several trifecta/pentafecta tools have been described and used for partial nephrectomy, radical prostatectomy or cystectomy (27,29,30). These tools are composite criteria including perioperative and oncological data to assess the quality of patient's management and have proven their positive impact in increasing overall and specific survival while being a good reflection of surgeon learning curve (27,30,31). Nevertheless, due to the rarity of the disease and the lack of high-volume/expert center labialization, no precise tool has been developed to assess the management of high-risk UTUC treated by RNU. But in the contemporary health-care evaluation system where standardizing outcomes report as well as monitoring and accredit surgical management become mandatory, these tolls are highly needed. Therefore, in this study, we aimed to establish a pentafecta assessing the management of patients with high-risk UTUC treated by RNU.

Material and Methods

Study population

We performed a retrospective analysis of patients who underwent RNU for intent to cure UTUC from three French academic hospital centers (Rennes, Tours and Toulouse) from January 1990 to January 2020. Were included all patients over 18 years-old treated by RNU for a non-metastatic HR-UTUC according to the EAU guidelines (European Association of Urology). Patients with non-urothelial carcinoma (renal cell carcinoma (n= 11 patients), other (n= 6) and no tumor founded (n=6)), patients with other surgery than RNU (n= 13), patients with EAU low-risk criteria (n= 58), patients with no follow-up available (n= 38) or with missing data (n= 18) were excluded. Patient information were collected on the same predefined dataset and all information were anonymized prior to datasharing.

Among the baseline patients' characteristics, were recorded: the age at the diagnosis, gender, ASA score, ECOG score, BMI (Body mass Index) index, smoking status (current smokers, former and non-smokers), preoperative renal function, history of diabetes, hypertension, or previous lung disease, history of bladder cancer. The preoperative imaging data with CT stage was also included when available.

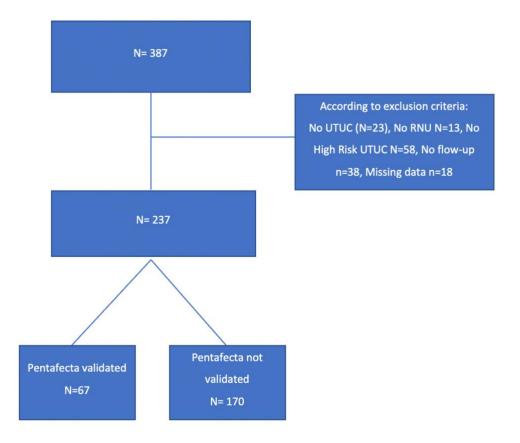


Figure 3: Flow chart

Definition of the PNUT Pentafecta

After a systematic review of the literature, a consensus among members of an international group of young academics experts (YAU urothelial carcinoma working group) was reached to validate a pentafecta (*PNUT project(Pentafecta for Nephro Ureterectomy Tool*))(27,30–34). This pentafecta, included:

Three perioperative criteria (34–37):

- 1. The performance of a monobloc bladder-cuff excision
- The absence of hematological complications. Defined by need for blood transfusion or the occurrence of a thromboembolic event such as pulmonary embolism or deep vein thrombosis
- 3. The absence of major complication within 3 months postoperatively

Two oncological criteria:

- 4. The absence of positive surgical margin (either in the soft tissue or in the ureter) on final specimen analysis
- The absence of recurrence of any type (local, contralateral, distant or bladder recurrence) at 12 months.

If a patient had simultaneously reached these 5 criteria he was considered as pentafectavalidated (PV).

Management and follow-up

After preoperative evaluation with at least a CT-scan imaging and a ureteroscopy when indicated, patients were classified at high-risk of UTUC and RNU was planned. The decision to perform the RNU by open or laparoscopic approach with or without robotic assistance, as well as the decision to perform lymphadenectomy and its extent was lead to the surgeon discretion based on patient and preoperative disease characteristics following standard templates previously described(20,38,39).

Perioperative data included the type of surgery, length of procedure, estimated blood loss and the likely need for transfusion, the lymph node dissection.

The use of early postoperative endovesical instillation of chemotherapy was also recorded. Post-operative data included: the length of stay, the prevalence of major (\geq III) and minor (\leq II) complications according to the Clavien-Dindo classification (40) within 3 months from surgery.

All surgical specimens were exanimated by a local dedicated uro-pathologists. Tumor grade was determined according to the 2016 World Health Organization (WHO) classification (41). Tumor stage was evaluated using the 2002 Union for International Cancer Control tumor, node, metastasis classification system (TNM) (cf annexes). Regarding the oncological outcomes, we assessed the anatomopathological stage and grade pTNM (41,42), the presence of positive surgical margins on the ureter or soft tissues, the occurrence of a local, contralateral, distant or intravesical recurrence, adjuvant chemotherapy or radiotherapy. Recurrence-free survival (RFS) was defined by any local or distant recurrence and metastasis but not bladder recurrence. For the overall survival (OS) analysis, we calculated the interval from RNU to death. Patients were censored at their last follow-up. The follow-up was set up according to the habits of each center, guided by international recommendations (1) with regular imaging every 6 months initially and cystoscopy every three or six months initially then annually.

Outcomes of interest

The primary outcome of the present study was to assess the PNUT rate and its impact when validated (PV) on oncological outcomes. The secondary outcome was to research predictors of pentafecta failure in order to help the clinicians to anticipate and adapt their therapeutic strategy.

Statistical analysis

Report of the collected categorical variables included frequencies and proportions in percent. Reports of the collected continuous variables focused on means, medians, and interquartile ranges (IQR). Normality of continuous variables was tested by the Kolmogorov-Smirnov normality test. The equality of variances was tested by the F-test. With respect to Pentafecta status, comparisons were performed using the Fisher's exact test, Wilcoxon rank sum test and Pearson's Chi-squared test as appropriate.

Logistic regression was performed to identify risk factors for pentafecta failure (PNV). Recurrence-free survival (RFS), and overall survival (OS) were graphically visualized using the Kaplan-Meier method. The difference between groups was assessed using a log-rank test. Multivariable Cox regression models were adjusted for cofounder's survival outcomes to investigate the association of PV with RFS, CSS, and OS. Association between clinicopathological parameters and OS, RFS and CSS was assessed in univariable and multivariable models using Cox hazards regression model.

All statistical analyses were performed using R Version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020) and pValue.io. The statistical significance level was set at p<0.05.

Results

Patients characteristics.

Among 387 patients in the multicentric cohort, 237 patients were included after the exclusion criteria have been applied. Among them, 67 patients (28%) validated the pentafecta (PV) proposed (no hematologic complication and no major complication within 3 months and bladder cuff excision and no positive margin and no recurrence within 12 months) *(Figure 3)* and were compared to the rest of the cohort (PNV).

Patients' characteristics are presented in *Table 1*. There was no statistical difference between both groups regarding BMI, ASA score, renal function, diabetes and hypertension. There was more patients with a lower ECOG score (p=0.05) in the PNV group. In the overall cohort, the median age was 68 (60,77). There was a high proportion of men (73%; n=174) in our population but the distribution was similar between groups (p=0.09).

	Total cohort	PN	PNUT Pentafecta validated		
Characteristic	N = 237	no, N = 170	yes, N = 67	p- value	
Age	68 (60, 77)	69 (60, 78)	67 (59, 75)	0.08	
Gender				0.09	
male	174 (73%)	130 (76%)	44 (66%)		
female	63 (27%)	40 (24%)	23 (34%)		
ASA	`, , , , , , , , , , , , , , , , ,	, <i>,</i>		0.01	
0	1 (0.4%)	0 (0%)	1 (1.5%)		
1	29 (12%)	15 (8.8%)	14 (21%)		
2	130 (55%)	92 (54%)	38 (57%)		
3	73 (31%)	59 (35%)	14 (21%)		
4	4 (1.7%)	4 (2.4%)	0 (0%)		
BMI	25.0 (22.5, 27.9)	24.9 (22.2, 27.6)	26.0 (23.0, 28.0)	0.4	
Unknown	38	21	17		
ECOG				0.03	

0	140	93 (649/)	47 (78%)	
1	(68%) 50	(64%) 42	0 (120/)	
I	50 (24%)	42 (29%)	8 (13%)	
2	15 (7.3%)	11 (7.5%)	4 (6.7%)	
3	1 (0.5%)	0 (0%)	1 (1.7%)	
Unknown	31	24	7	
Smoking status				0.5
Never	57 (27%)	45 (29%)	12 (21%)	
Former	82	59	23 (40%)	
	(38%)	(38%)		
Current	75	52	23 (40%)	
	(35%)	(33%)	· · ·	
Unknown	23	14	9	
Hypertension	102	77	25 (37%)	0.3
	(43%)	(45%)		
Diabetus	35	26	9 (13%)	0.7
	(15%)	(15%)		
Preoperative creatinin level	100 (79,	104 (79,	95 (80, 122)	0.4
	129)	132)		
Unknown	20	12	8	
Neoadjuvant chemotherapy	4 (1.7%)	3 (1.8%)	1 (1.5%)	>0.9
Preoperative ureteroscopy	131	96	35 (52%)	0.6
	(55%)	(56%)		0.1
Clinical CT stage	16	10	4 (100/)	0.1
cT0	16	12	4 (18%)	
cTa/cT1	(18%)	(17%) 15	0 (410/)	
	(26%)	(22%)	9 (41%)	
cT2	19	13	6 (27%)	
012	(21%)	(19%)	0 (2770)	
cT3	24	22	2 (9.1%)	
015	(26%)	(32%)	2 (5.170)	
cT4	8 (8.8%)	7 (10%)	1 (4.5%)	
Unknown	146	101	45	
Lymph node status on CT				0.8
No	197	140	57 (89%)	
	(90%)	(91%)		
Lymphnodes < 1cm	21	14	7 (11%)	
	(9.6%)	(9.1%)		
Lymphnodes > 1cm	19 (8%)	16 (9%)	3 (4.5%)	
Hydronephrosis on CT	157	112	45 (67%)	0.9
	(66%)	(66%)		
History of bladder cancer	67 (28%)	53 (31%)	14 (21%)	0.1
Median (IQR); n (%)				

CT: computered tomodensitometry, ASA score: American association of anesthesia; BMI: body mass index;

Table 1: Patients' characteristics in the overall population and according to the validation of the pentafecta

Perioperative outcomes

The mean operative time was similar between groups (p=0.32). The surgical approach was similarly distributed. The hospital length of stay was shorter in the PV compared to the PNV (7.9 vs. 10.6 days; p<0,001) *Table 2*. Besides major complication, there were also fewer minor complications (Clavien-Dindo I-II) in the PV group (16% vs. 24.7%; p=0.04). In the PNV group there was 20.8% of major complication. A total of 28 (12%) patients required perioperative blood transfusions and postoperative thromboembolic disease was reported in only two patients.

	Total cohort PNUT Pentafecta validated				
Characteristic	N = 237	no, N = 170	yes, N = 67	p-value	
Type of surgery				0.03	
RNU with bladder cuff	222 (94%)	155 (91%)	67 (100%)		
RNU without cuff	11 (4.6%)	11 (6.5%)	0 (0%)		
Nephrectomy without	4 (1.7%)	4 (2.4%)	0 (0%)		
ureterectomy					
Surgical technique				0.3	
Open	63 (27%)	48 (28%)	15 (22%)		
Laparoscopic	23 (9.7%)	17 (10%)	6 (9.0%)		
Robotic	50 (21%)	39 (23%)	11 (16%)		
Combination	101 (43%)	66 (39%)	35 (52%)		
side				0.06	
Left	123 (52%)	94 (55%)	29 (43%)		
Right	113 (48%)	76 (45%)	37 (55%)		
bilateral	1 (0.4%)	0 (0%)	1 (1.5%)		
Monobloc cuff	219 (92%)	152 (89%)	67 (100%)	0.006	
Transfusion	28 (12%)	28 (16%)	0 (0%)	<0.001	
OR duration	240 (180, 300)	240 (180, 300)	225 (178, 300)	0.3	
Unknown	69	45	24		
Lymph node dissection	67 (29%)	44 (26%)	23 (34%)	0.2	
Unknown	3	3	0		
Postoperative instillation	13 (5.5%)	8 (4.7%)	5 (7.5%)	0.5	
Complications	79 (33%)	70 (41%)	9 (13%)	<0.001	
Unknown	1	1	0		
Total of major complications (≥Clavien-Dindo 3) (n)				<0.001	
0	201 (85%)	134 (79%)	67 (100%)		
1	35 (15%)	35 (21%)	0 (0%)		
3	1 (0.4%)	1 (0.6%)	0 (0%)		

Highest minor complication Clavien-grade				
1	21 (8.8%)	14 (8.2%)	7 (10%)	0.046
2	35 (15%)	28 (16%)	3 (4.5%)	
Highest major complication Clavien-grade				<0.001
3	21 (8.9%)	21 (12%)	0 (0%)	
4	9 (3.8%)	9 (5.3%)	0 (0%)	
5	6 (2.5%)	6 (3.5%)	0 (0%)	
Post operative creatinin level	116 (95, 136)	116 (96, 136)	116 (95, 132)	0.6
Unknown	20	11	9	
n (%); Median (IQR) OR: Opera	ting room		I	
Fisher's exact test; Pearson's Chi	i-squared test; Wilc	oxon rank sum test		

table 2 Perioperative outcomes according to pentafecta

PNUT Pentafecta validation

Only 67 patients (28%) from our cohort reached the pentafecta with a similar PV rate between centers (p>0.05).

Validation rate of each criteria are shown in *Figure 4 and 5*. The absence of hematological complications, i.e., the absence of the requirement for peri-operative transfusion and the absence of thromboembolic complications was accomplished for 193 patients (81%) of all our population. The absence of major complication within 3 months was achieved for 158 patients (67%).

We had negative surgical margins for 211 patients (89%) and a monobloc bladder cuff was done for 219 (92%) of all our population (237 patients). In the end the most discriminating criteria was as expected the absence of any type of recurrence including bladder recurrence at 12 months, which was achieved only for 54% (127 patients) in our population.

Bladder cuff excision

- Absence of hematologic complication
- Absence of major complication
- Absence of reccurence (all causes) within 12 months
- Negative surgical margins

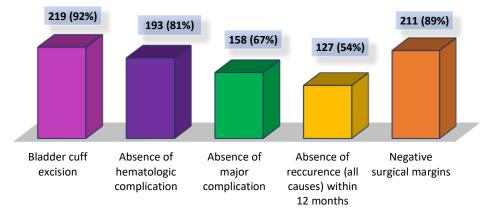


Figure 4 Validation rate of each criteria of the PV in overall population

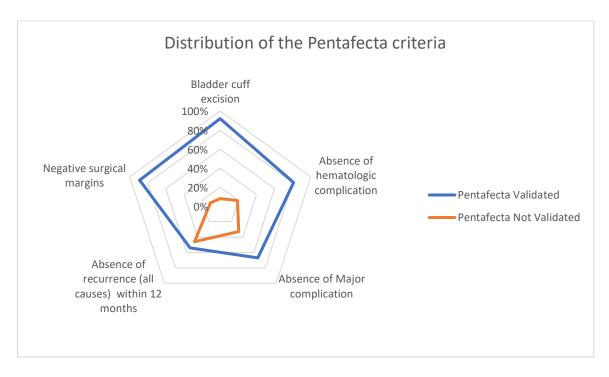


Figure 5 Distribution of the pentafecta criteria

Pathologic outcomes:

There was no difference in terms of pathological stage or CIS between groups. Nevertheless, there were more positive lymph nodes and multifocality in the PNV group (all p<0.05). The rate of positive surgical margins in the PNV group were 7.2% in soft tissue and 8.4% in the ureter.

Pathological data are summarized in *Table 3*.

	Total cohort	PNU	T Pentafecta valida	ated
Characteristic	N = 237	no, N = 170	yes, N = 67	p-value
Pathological stage			-	0.6
pT0	7 (3.1%)	6 (3.7%)	1 (1.6%)	
рТа	66 (29%)	43 (27%)	23 (37%)	
pT1	55 (25%)	43 (27%)	12 (19%)	
pT2	30 (13%)	22 (14%)	8 (13%)	
pT3	59 (26%)	41 (25%)	18 (29%)	
pT4	7 (3.1%)	6 (3.7%)	1 (1.6%)	
Unknown	13	9	4	
Pathological tumor grade				0.07
Low grade	62 (26%)	39 (23%)	23 (34%)	
High grade	175 (74%)	131 (77%)	44 (66%)	
Multifocal urothelial carcinoma	95 (40%)	77 (45%)	18 (27%)	0.009
Lymph node involvement				0.01
no	72 (31%)	43 (25%)	29 (43%)	
yes	28 (12%)	24 (14%)	4 (6.0%)	
Nx	136 (58%)	102 (60%)	34 (51%)	
Unknown	1	1	0	
Lymphovascular invasion	73 (31%)	60 (35%)	13 (19%)	0.02
Concomitant Carcinoma in situ	58 (24%)	47 (28%)	11 (16%)	0.07
n (%)				
Fisher's exact test; Pearson's Chi-sq	uared test			

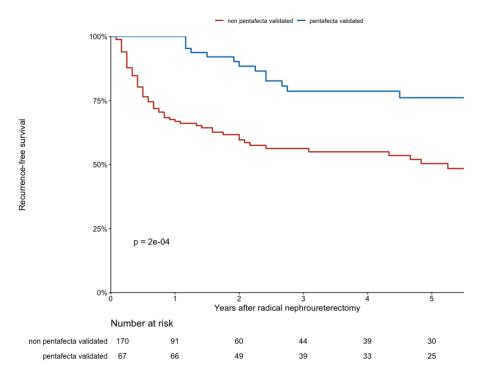
Table 3 Pathological characteristics

Oncological Outcomes

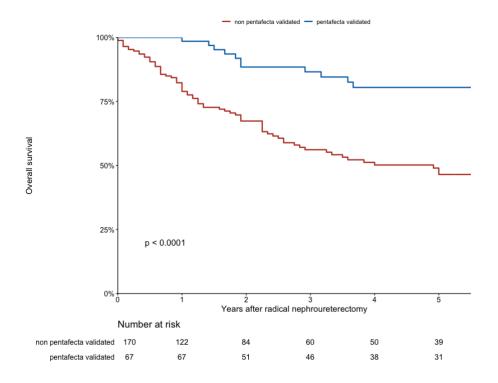
One of the co-primary endpoints was to assess the impact of PV on oncological survival.

Overall, the median follow-up was 51 months (20 - 79), and 56 months (26-92) in the PV and

22.5 months (10-56)) in the PNV group (p< 0,001).


Only four patients received neoadjuvant chemotherapy without difference between groups

and 32 (14%) received adjuvant chemotherapy in the PNV and PV group (16% vs. 7.5%;


p=0.09).

Eighty-six patients (36,2%) experienced local or metastatic recurrence with a distribution of 41% (n= 70) vs 24% (16%) in the groups PNV and PV respectively (p= 0.013). Preferred metastatic sites were mainly lymph nodes, bone and lung, it occurred for 37% vs 16% in the PNV and PV group respectively (p= 0.076).

The 5-year RFS estimates were 76.1 % (95% CI: 65.3 - 88.6) for PV and 50.4 % (95% CI: 41.8 - 60.7) for PNV. The 5-year OS estimates were 80.5 % (95% CI: 70.7 - 91.7) for PV and 46.5 % (95% CI: 38.3 - 56.5) for PNV. RFS and OS were significantly higher in the PV group on the Kaplan-Meir survival curves (all p<0.001) (Figure 7 A and B).

7A

Figure 6 Kaplan Meier Curves pairwise log rank test and 5-year survival analysis. 7A: Recurrence free Survival at 5 years 7B: Overall survival at 5 years by pentafecta validated

In univariable Cox regression analysis, PV was associated with RFS and OS (HR: 0.37, 95% CI: 0.21 - 0.64; p<0.001 and HR: 0.33, 95% CI: 0.19 - 0.57; p<0.001 respectively). In the multivariable Cox regression analysis that was adjusted for age, gender, ASA, neoadjuvant chemotherapy, pathological stage, multifocality, lymph node involvement and invasion, surgical margin, postoperative instillation, adjuvant chemotherapy and radiotherapy, PV was associated with better RFS (HR: 0.38, 95% CI: 0.20 - 0.69; p<0.001) and OS (OS: HR: 0.42, 95% CI: 0.23 - 0.79; p<0.001).

	R	lecurrence-free	Survival		Overall surviva	1
Characteristic	HR	95% CI	p-value	HR	95% CI	p-value
pentafecta_validated						
no	—	—			—	
yes	0.38	0.20, 0.69	0.002	0.42	0.23, 0.79	0.006
Age	1.02	1.00, 1.04	0.085	0.99	0.97, 1.01	0.3
Gender						
male	—	—		_		
female	1.10	0.65, 1.85	0.7	1.23	0.73, 2.09	0.4
ASA	0.92	0.61, 1.40	0.7	1.18	0.79, 1.74	0.4
Neodajuvant chemotherapy						
No	—	—		—	—	
Yes	0.49	0.07, 3.68	0.5	0.39	0.05, 2.96	0.4
Pathological Stage						
pT0	—					
рТа	1.30	0.16, 10.4	0.8	0.63	0.17, 2.29	0.5
pT1	5.44	0.70, 42.2	0.1	1.27	0.35, 4.60	0.7
pT2	2.99	0.36, 24.7	0.3	0.64	0.16, 2.61	0.5
рТ3	5.11	0.64, 40.5	0.1	0.76	0.20, 2.88	0.7
pT4	4.04	0.41, 39.9	0.2	0.24	0.04, 1.46	0.1
multifocal						
no	—	—				
yes	0.61	0.36, 1.01	0.06	1.51	0.94, 2.43	0.09
Lymph node involvement						
no	—	—				
yes	1.36	0.62, 2.95	0.4	1.01	0.47, 2.18	>0.9
Nx	1.10	0.64, 1.91	0.7	0.87	0.51, 1.49	0.6
Lymphovascular invasion						
no	—					
yes	1.12	0.61, 2.05	0.7	1.59	0.85, 2.98	0.2
Surgical margin						
no	—	—		—	—	
yes	1.05	0.52, 2.14	0.9	0.95	0.49, 1.84	0.9
Postoperative instillation	0.38	0.12, 1.25	0.1	0.13	0.02, 0.95	0.04
Received adjuvant chemotherapy	3.06	1.68, 5.56	< 0.001	2.64	1.44, 4.86	0.002
Received adjuvant radiotherapy HR = Hazard Ratio, CI = C	1.08	0.43, 2.72	0.9	0.65	0.26, 1.66	0.4

HR = Hazard Ratio, CI = Confidence Interval table 4 Multivariable Cox regression Analysis for overall survival and recurrence free survival

Secondary objective

Our secondary objective was to explore if some perioperative and intraoperative factors could predict the pentafecta failure. We performed an univariable logistic regression analysis and found that only ASA score was significant (OR: 0.47, 0.30-0.73; p< 0.001) among the patients baseline characteristics for the prediction of PNV. In a multivariable log regression no one of the preoperative variable were predictor of PNV (all p>0.05).

Characteristic	OR	95% CI	p-value
Age	1.08	0.97, 1.24	0.2
Gender		,	
male			
female	0.50	0.00, 20.0	0.7
ASA	0.02	0.00, 1.01	0.11
BMI	0.96	0.57, 1.35	0.8
Smoking status		,	
Never			
Former	1.48	0.01, 165	0.9
Current	3.18	0.09, 177	0.5
Hypertension		,	
No			
Yes	1.31	0.03, 50.3	0.9
Diabetus		,	
No			
Yes	1.82	0.05, 95.7	0.7
Preoperative creatinin	1.00	0.97, 1.02	0.8
Preoperative ureteroscopy		,	
No			
Yes	0.15	0.01, 1.53	0.2
Clinical stage			
cT0			
cTa/cT1	9.56	0.21, 1,215	0.3
cT2	1.00	0.01, 67.0	>0.9
cT3	0.39	0.01, 13.8	0.6
cT4	0.00		>0.9
Lymph node status CT			
No			
Lymphnodes < 1cm	6.53	0.07, 800	0.4
Hydronephrosis			
No			
Yes	2.92	0.18, 216	0.5
Surgical technique			
Open			
Laparoscopic	0.00		>0.9
Robotic	14.9	0.04, 216,564	0.5
Combination	16.7	0.15, 62,852	0.4
Side			

Left			
Right	3.09	0.22, 212	0.5
OR duration	1.01	0.99, 1.03	0.6
Lymph node dissection			
No		—	
Yes	0.56	0.01, 25.2	0.8
Postoperative instillation	0.36		>0.9
OR = Odds Ratio CI = Confidence Interval			

OR = Odds Ratio, CI = Confidence Interval table 5 univariable logistic regression analysis to predict the PNUT Pentafecta failure

Discussion

To our knowledge, this study is the first to propose a pentafecta tool (the PNUT) to evaluate minimally invasive or open RNU. Although, reporting surgical outcomes using dedicated tools is now commonly used in in contemporary practice, the optimal treatment of patients with high-risk UTUC remains challenging due to the rarity and practical challenges inherent to this disease. Therefore, there was an unmet need to propose a relevant tool to assess the management of this rare disease. The importance of measuring and improving surgical quality and perioperative management is well established, but it is unclear how best to accomplish these objectives. Being the pioneer to establish a tool for standardizing the outcomes in this indication, this study has the role to explore the field while improving the management and the quality of care of our patients with UTUC.

Our pentafecta includes two criteria that are related to the quality of the surgery: negative surgical margins and bladder-cuff excision. Indeed, positive surgical margins is associated with survival after RNU(1,43,44). Whatever the approach used for the RNU, some precautions should be considered during the surgery. The kidney should be removed without opening the Gerota's fascia, and opening of the urinary tract should be avoided as well as contact between instruments and the tumour(1). Therefore, following these requirements and in case of a good preoperative evaluation of the tumor, it is unlikely to get a positive surgical margin during RNU. In our study the rate of positive surgical margins was 15.6% which is in accordance with previous studies with large cohorts (44,45) especially when a "en-bloc" bladder cuff is not performed in high-risk patients. For the bladder-cuff, it is mandatory to perform a complete resection of the distal ureter and its orifice to reduce the risk of local and bladder recurrence(1,46–48). Although debates on the best specific approach for the bladder-cuff exist, the surgical approach of the ureter does not impact the risk of recurrence(19) but

the specific technique of excision might impact bladder recurrence(46). In our study, 8% of the RNU were performed without en-bloc bladder cuff. These results are encouraging regarding the standardization of the RNU technique. The bladder cuff remains one of the most important steps of this surgery and is widely recognized as quality factor of the intraoperative management(49) and was mandatory for the creation of the PNUT.

As the objective of the PNUT tool was to assess the perioperative management of high-risk patients who underwent RNU, it was important to include postoperative complications. It was decided to include hematologic and major complications based on a review of the literature. Indeed, hematologic complications were found to be the most common complication in the literature(37) and major complications is a usual key criteria for the evaluation for perioperative surgery(27,30,31,33). In the literature, the complication rate after RNU is usually reported to be between 32-40%(28,37,50) which is in light to our study that reported 33% of complications. Similarly, the rate of major complications (15%) was similar to the usual reported rate.(37) In our study, ECOG status was higher in the PNV group. Although, ECOG was reported to be a predictor of major complications(37), ECOG was not likely to be a confounding factor in our analysis as the difference between groups was on ECOG 1 which is not considered to impact complications rate. Morevoer it was not found as a predictor of PNV in multivariate analysis. The same interpretation is also proposed for the ASA score. Although it might be debatable to implement into a perioperative assessment tool an oncological outcome, we believe that it is of utmost importance as it remains a great representation of a good management on oncology. The concept of combining oncological outcomes to was proposed by Salomon et al(51). Indeed, since few years perioperative chemotherapy and early postoperative bladder instillation are recommended(49). Although it was not possible to use these criteria in our historic cohort, because they were not used at that time, they are recognized as quality indicators for perioperative management. Therefore,

using early recurrence (<12 months) is an interesting tool to reflect these specific steps in future studies assessing RNU management. In our study the use of the PNUT has shown a great predictive value in OS and RFS when it was validated, this was an expected result that is mandatory for the use of this kind of assessment tool.

In the multivariate analysis performed to search for predictors of PNV, we did not find any preoperative patients characteristics to be involved. This a very interesting result as it suggests that the PNUT highly reflects the quality of care and the perioperative management without being impacted by patients' baseline characteristics.

Measuring and improving the quality of health care is an increasingly important goal in our contemporary practice. Patients and their families request information on outcomes, payers require health care systems to address variations in quality of care, and credentialing agencies demand evidence that hospitals – or surgeons - meet performance standards. Consequently, if its use is externally validated and accepted by our community, the use of the PNUT might be implemented as a new standard for maintenance of certification, requiring surgeons to monitor their own performance even in expert-centers. Indeed, payers in both the public and private sectors are rapidly implementing centers of excellence and pay-for-performance programs, further driving the need to systematically track and improve the quality of surgical care. Hence, stakeholders and regulation committee also track key indicators of surgical safety and monitors surgeon-specific performance as part of its credentialing process.

While the strengths of this PNUT tool remain in its innovative aspect and promising results on oncological outcomes, the study is not without limitations. First, its retrospective and multicenter design may have resulted in various in surgical technic and experience. Indeed, to be fully applicable this PNUT tool should be tested in a cohort where surgeon's experience is

32

known in order to relate its validation to the learning curve. In our study, the difference in surgeon expertise might have also biased the results and therefore should be assessed in other centers. Second, due to its retrospective design, all the new standards of care were not completely reflected. Perioperative systemic therapy as well as lymphadenectomy and early postoperative instillation were not performed routinely, but we believe that the use of early recurrence from all causes remains a great endpoint to reflect the perioperative oncological management for future studies. Although the number of positive lymphe nodes on final specimen was different between groups, the number of positive clinical lymphe nodes and the number of lymphe node dissection were similar. Third, we found a low rate of PV (28%), although some could debate the interest of a tool with a low validation rate, it is expected to become much higher in recent larger cohort were patients benefit from more accurate management according to recent guidelines. Finally, to fully validate this study, it is still necessary to perform an external validation in larger cohort and, if possible to implement artificial intelligence-based algorithms to validate its good predictive value in recent cohort.

Conclusion:

This study is the first to propose a tool (the PNUT) to assess perioperative management of UTUC patient at high-risk treated by RNU. Despite a low rate of validation, this pentafecta has shown a good reliability to oncological outcomes without being impacted by patients baseline characteristics suggesting its great reflection of the perioperative cares itself. Further studies are needed to externally validate the PNUT in contemporary cohorts.

Annexes

T - F	Primary tumour			
тх	Primary tumour cannot be assessed			
т0	No evidence of primary tumour			
	Ta Non-invasive papillary carcinoma			
	Tis Carcinoma in situ			
T1	Tumour invades subepithelial connective tissue			
Т2	Tumour invades muscularis			
Т3	(Renal pelvis) Tumour invades beyond muscularis into peripelvic fat or renal parenchyma (Ureter) Tumour invades beyond muscularis into periureteric fat			
Τ4	Tumour invades adjacent organs or through the kidney into perinephric fat			
N - I	Regional lymph nodes			
NX	Regional lymph nodes cannot be assessed			
NO	No regional lymph node metastasis			
N1	Metastasis in a single lymph node 2 cm or less in the greatest dimension			
N2	Metastasis in a single lymph node more than 2 cm, or multiple lymph nodes			
M -	Distant metastasis			
M0	No distant metastasis			
M1	Distant metastasis			

TNM = Tumour, Node, Metastasis (classification).

Figure 7 TNM classification for UTUC

Bibliography

1. Professionals S-O. EAU Guidelines: Upper Urinary Tract Urothelial Cell Carcinoma [Internet]. Uroweb. [cited 2020 Jun 15]. Available from: https://uroweb.org/guideline/upper-urinary-tract-urothelial-cell-carcinoma/#6

2. Almås B, Øverby S, Halvorsen OJ, Reisæter LAR, Assmus J, Carlsen B, et al. Tumour architecture, grade and location remain predictors of non-organ-confined upper tract urothelial carcinoma at time of radical nephroureterectomy: results from a multicenter Norwegian external validation study. World J Urol. 2020 Mar;38(3):717–23.

3. Soria F, Shariat SF, Lerner SP, Fritsche H-M, Rink M, Kassouf W, et al. Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC). World J Urol. 2017 Mar;35(3):379–87.

4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018: Cancer Statistics, 2018. CA Cancer J Clin. 2018 Jan;68(1):7–30.

5. Mori K, Mostafaei H, Enikeev DV, Lysenko I, Quhal F, Kimura S, et al. Differential Effect of Sex on Outcomes after Radical Surgery for Upper Tract and Bladder Urothelial Carcinoma: A Systematic Review and Meta-Analysis. J Urol. 2020 Jul;204(1):58–62.

6. Rouprêt M, Babjuk M, Compérat E, Zigeuner R, Sylvester RJ, Burger M, et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur Urol. 2018 Jan;73(1):111–22.

7. Shariat SF, Favaretto RL, Gupta A, Fritsche H-M, Matsumoto K, Kassouf W, et al. Gender differences in radical nephroureterectomy for upper tract urothelial carcinoma. World J Urol. 2011 Aug;29(4):481–6.

8. Margulis V, Shariat SF, Matin SF, Kamat AM, Zigeuner R, Kikuchi E, et al. Outcomes of radical nephroureterectomy: a series from the Upper Tract Urothelial Carcinoma Collaboration. Cancer. 2009 Mar 15;115(6):1224–33.

9. Browne BM, Stensland KD, Moynihan MJ, Canes D. An Analysis of Staging and Treatment Trends for Upper Tract Urothelial Carcinoma in the National Cancer Database. Clin Genitourin Cancer. 2018 Aug;16(4):e743–50.

10. Jeldres C, Sun M, Isbarn H, Lughezzani G, Budäus L, Alasker A, et al. A populationbased assessment of perioperative mortality after nephroureterectomy for upper-tract urothelial carcinoma. Urology. 2010 Feb;75(2):315–20.

11. Lughezzani G, Burger M, Margulis V, Matin SF, Novara G, Roupret M, et al. Prognostic factors in upper urinary tract urothelial carcinomas: a comprehensive review of the current literature. Eur Urol. 2012 Jul;62(1):100–14.

12. Rouprêt M, Hupertan V, Seisen T, Colin P, Xylinas E, Yates DR, et al. Prediction of cancer specific survival after radical nephroureterectomy for upper tract urothelial carcinoma: development of an optimized postoperative nomogram using decision curve analysis. J Urol. 2013 May;189(5):1662–9.

 Benamran D, Seisen T, Naoum E, Vaessen C, Parra J, Mozer P, et al. Risk stratification for upper tract urinary carcinoma. Transl Androl Urol. 2020 Aug;9(4):1799–808.
Seisen T, Colin P, Rouprêt M. Risk-adapted strategy for the kidney-sparing

management of upper tract tumours. Nat Rev Urol. 2015 Mar;12(3):155–66.

15. Foerster B, Abufaraj M, Matin SF, Azizi M, Gupta M, Li W-M, et al. Pretreatment Risk Stratification for Endoscopic Kidney-sparing Surgery in Upper Tract Urothelial Carcinoma: An International Collaborative Study. Eur Urol. 2021 Oct;80(4):507–15.

16. l'Urologie M de. Recommandations françaises du Comité de Cancérologie de l'AFU –

Actualisation 2018–2020 : tumeurs de la voie excrétrice supérieure [Internet]. 2019 [cited 2020 Mar 29]. Available from: https://www.urofrance.org/base-

bibliographique/recommandations-francaises-du-comite-de-cancerologie-de-lafuactualisation-15

17. Ghoneim T, Colin P, Rouprêt M. Tumeur de la voie excrétrice supérieure. 2020;12.

18. Lai S-C, Wu P-J, Liu J-Y, Seery S, Liu S-J, Long X-B, et al. Oncological impact of different distal ureter managements during radical nephroureterectomy for primary upper urinary tract urothelial carcinoma. World J Clin Cases. 2020 Nov 6;8(21):5104–15.

19. Pizzighella M, Bruyere F, Peyronnet B, Grafeille V, Brichart N, Mori K, et al. THE MANAGEMENT OF DISTAL URETER DURING RADICAL

NEPHROURETERECTOMY DOES NOT INFLUENCE BLADDER RECURRENCE. J Endourol. 2021 Jun 13;

20. Roscigno M, Brausi M, Heidenreich A, Lotan Y, Margulis V, Shariat SF, et al. Lymphadenectomy at the time of nephroureterectomy for upper tract urothelial cancer. Eur Urol. 2011 Oct;60(4):776–83.

21. Roscigno M, Shariat SF, Margulis V, Karakiewicz P, Remzi M, Kikuchi E, et al. Impact of lymph node dissection on cancer specific survival in patients with upper tract urothelial carcinoma treated with radical nephroureterectomy. J Urol. 2009 Jun;181(6):2482– 9.

22. Liu P, Su X, Xiong G-Y, Li X-S, Zhou L-Q. Diagnostic Ureteroscopy for Upper Tract Urothelial Carcinoma is Independently Associated with Intravesical Recurrence after Radical Nephroureterectomy. Int Braz J Urol. 2016 Dec;42(6):1129–35.

23. Birtle A, Johnson M, Chester J, Jones R, Dolling D, Bryan RT, et al. Adjuvant chemotherapy in upper tract urothelial carcinoma (the POUT trial): a phase 3, open-label, randomised controlled trial. Lancet Lond Engl. 2020 Apr 18;395(10232):1268–77.

24. Fujita K, Taneishi K, Inamoto T, Ishizuya Y, Takada S, Tsujihata M, et al. Adjuvant chemotherapy improves survival of patients with high-risk upper urinary tract urothelial carcinoma: a propensity score-matched analysis. BMC Urol. 2017 Dec 1;17(1):110.

25. Freifeld Y, Ghandour R, Singla N, Woldu S, Clinton T, Kulangara R, et al. Preoperative predictive model and nomogram for disease recurrence following radical nephroureterectomy for high grade upper tract urothelial carcinoma. Urol Oncol Semin Orig Investig. 2019 Oct;37(10):758–64.

26. Krabbe L-M, Eminaga O, Shariat SF, Hutchinson RC, Lotan Y, Sagalowsky AI, et al. Postoperative Nomogram for Relapse-Free Survival in Patients with High Grade Upper Tract Urothelial Carcinoma. J Urol. 2017 Mar;197(3 Part 1):580–9.

27. the PROMETRICS 2011 Research Group, Aziz A, Gierth M, Rink M, Schmid M, Chun FK, et al. Optimizing outcome reporting after radical cystectomy for organ-confined urothelial carcinoma of the bladder using oncological trifecta and pentafecta. World J Urol. 2015 Dec;33(12):1945–50.

28. Raman JD, Lin Y-K, Shariat SF, Krabbe L-M, Margulis V, Arnouk A, et al. Preoperative nomogram to predict the likelihood of complications after radical nephroureterectomy. BJU Int. 2017 Feb;119(2):268–75.

29. Afferi L, Moschini M, Baumeister P, Zamboni S, Cornelius J, Ineichen G, et al. Trends in risk-group distribution and Pentafecta outcomes in patients treated with nervesparing, robot-assisted radical prostatectomy: a 10-year low-intermediate volume single-center experience. World J Urol. 2021 Feb;39(2):389–97.

30. Cacciamani GE, Winter M, Medina LG, Ashrafi AN, Miranda G, Tafuri A, et al. Radical cystectomy pentafecta: a proposal for standardisation of outcomes reporting following robot-assisted radical cystectomy: RC-pentafecta for standardised outcomes reporting after radical cystectomy. BJU Int. 2020 Jan;125(1):64–72.

31. Baron P, Khene Z, Lannes F, Pignot G, Bajeot AS, Ploussard G, et al. Multicenter external validation of the radical cystectomy pentafecta in a European cohort of patients undergoing robot-assisted radical cystectomy with intracorporeal urinary diversion for bladder cancer. World J Urol. 2021 Jul 3;

32. Afferi L, Abufaraj M, Soria F, D'Andrea D, Xylinas E, Seisen T, et al. A comparison of perioperative outcomes of laparoscopic versus open nephroureterectomy for upper tract urothelial carcinoma: a propensity score matching analysis. Minerva Urol E Nefrol Ital J Urol Nephrol. 2021 Jan 13;

33. Kahn AE, Shumate AM, Ball CT, Thiel DD. Pre-operative factors that predict trifecta and pentafecta in robotic assisted partial nephrectomy. J Robot Surg. 2020 Feb;14(1):185–90.

34. Raman JD, Jafri SM. Complications Following Radical Nephroureterectomy. Curr Urol Rep. 2016 May;17(5):36.

35. Levy A, Canes D. Perioperative complications and adverse sequelae of radical nephroureterectomy. Transl Androl Urol. 2020 Aug;9(4):1853859–1851859.

36. Geiger S, Kocher N, Illinsky D, Xylinas E, Chang P, Dewey L, et al. Comparison of the Comprehensive Complication Index and Clavien-Dindo systems in predicting perioperative outcomes following radical nephroureterectomy. Transl Androl Urol. 2020 Aug;9(4):1780–5.

37. Kocher NJ, Canes D, Bensalah K, Roupret M, Lallas C, Margulis V, et al. Incidence and preoperative predictors for major complications following radical nephroureterectomy. Transl Androl Urol. 2020 Aug;9(4):1786–93.

38. Favaretto RL, Shariat SF, Chade DC, Godoy G, Adamy A, Kaag M, et al. The Effect of Tumor Location on Prognosis in Patients Treated with Radical Nephroureterectomy at Memorial Sloan-Kettering Cancer Center. Eur Urol. 2010 Oct;58(4):574–80.

 Lughezzani G, Jeldres C, Isbarn H, Sun M, Shariat SF, Alasker A, et al. Nephroureterectomy and segmental ureterectomy in the treatment of invasive upper tract urothelial carcinoma: a population-based study of 2299 patients. Eur J Cancer Oxf Engl 1990.
2009 Dec;45(18):3291–7.

40. Classification de Clavien [Internet]. 2016 [cited 2021 Aug 5]. Available from: https://www.urofrance.org/outils-et-recommandations/questionnaires-devaluation/classification-de-clavien.html

41. Sobin LH, Gospodarowicz MK, Wittekind C. TNM Classification of Malignant Tumours. John Wiley & Sons; 2011. 209 p.

42. Mossanen M, Chang SL, Kimm S, Sonpavde GP, Kibel AS. Current Staging Strategies for Muscle-Invasive Bladder Cancer and Upper Tract Urothelial Cell Carcinoma. Urol Clin North Am. 2018 May;45(2):143–54.

43. Ikeda M, Matsumoto K, Hirayama T, Koguchi D, Murakami Y, Matsuda D, et al. Selected High-Risk Patients With Upper Tract Urothelial Carcinoma Treated With Radical Nephroureterectomy for Adjuvant Chemotherapy: A Multi-Institutional Retrospective Study. Clin Genitourin Cancer. 2018 Jun 1;16(3):e669–75.

44. Kenigsberg AP, Smith W, Meng X, Ghandour R, Rapoport L, Bagrodia A, et al. Robotic Nephroureterectomy vs Laparoscopic Nephroureterectomy: Increased Utilization, Rates of Lymphadenectomy, Decreased Morbidity Robotically. J Endourol. 2021 Mar;35(3):312–8.

45. Katims AB, Say R, Derweesh I, Uzzo R, Minervini A, Wu Z, et al. Risk Factors for Intravesical Recurrence after Minimally Invasive Nephroureterectomy for Upper Tract Urothelial Cancer (ROBUUST Collaboration). J Urol. 2021 Sep;206(3):568–76.

46. Xylinas E, Rink M, Cha EK, Clozel T, Lee RK, Fajkovic H, et al. Impact of distal ureter management on oncologic outcomes following radical nephroureterectomy for upper tract urothelial carcinoma. Eur Urol. 2014 Jan;65(1):210–7.

47. Xylinas E, Kluth L, Passoni N, Trinh Q-D, Rieken M, Lee RK, et al. Prediction of intravesical recurrence after radical nephroureterectomy: development of a clinical decision-making tool. Eur Urol. 2014 Mar;65(3):650–8.

48. Seisen T, Granger B, Colin P, Léon P, Utard G, Renard-Penna R, et al. A Systematic Review and Meta-analysis of Clinicopathologic Factors Linked to Intravesical Recurrence After Radical Nephroureterectomy to Treat Upper Tract Urothelial Carcinoma. Eur Urol. 2015 Jun;67(6):1122–33.

49. König F, Shariat SF, Karakiewicz PI, Mun D-H, Rink M, Pradere B. Quality indicators for the management of high-risk upper tract urothelial carcinoma requiring radical nephroureterectomy. Curr Opin Urol. 2021 Jul;31(4):291–6.

50. Lin Y-K, Deliere A, Lehman K, Harpster LE, Kaag MG, Raman JD. Critical analysis of 30 day complications following radical nephroureterectomy for upper tract urothelial carcinoma. Can J Urol. 2014 Aug;21(4):7369–73.

51. Salomon L, Saint F, Anastasiadis AG, Sebe P, Chopin D, Abbou C-C. Combined reporting of cancer control and functional results of radical prostatectomy. Eur Urol. 2003 Dec;44(6):656–60.

Vu les directeurs de thèse,

Dr Benjamin PRADERE

Dr BARON Pierre

Vu, le Doyen De la Faculté de Médecine de Tours

Tours, le

BERNARD Clémence

46 pages – 5 tableaux – 7 figures – 1 annexe

<u>Résumé</u>

Contexte : De nombreux outils ont été développés en onco-urologie avec pour but l'évaluation et l'optimisation de la prise en charge du patient. Pour la néphro-urétérectomie totale (NUT) qui est le traitement de référence des tumeurs des voies excrétrices supérieures (TVES) de haut risque (HR), aucun outil d'évaluation n'a encore été proposé. Le but de cette étude était de proposer un pentafecta afin d'évaluer la qualité de la prise en charge chirurgicale de ces patients.

Matériel et méthodes : Il s'agit d'une étude rétrospective, multicentrique dans laquelle l'ensemble des patients atteints de TVES-HR et traités par NUT dans trois centres universitaires français entre 1998 et 2020 ont été inclus dans une base de données commune. Les patients avec un suivi <12 mois, de bas risque ou présentant trop de données manquantes étaient exclus. Après analyse systématique de la littérature, un consensus entre les membres d'un groupe d'experts internationaux (YAU urothelial carcinoma working group) a été réalisé pour valider le pentafecta (PNUT). Les critères validant le pentafecta étaient : absence de complication hématologique (transfusion périopératoire, évènement thromboembolique), absence de complication majeure (Clavien Dindo \geq 3) dans les 3 mois, réalisation d'une collerette vésicale, absence de marge chirurgicale et absence récidive dans l'année suivant la NUT. Nous avons défini deux groupes de patients selon la validation du pentafecta, et évalué son impact sur les résultats oncologiques.

Résultats : Parmi les 387 patients de la cohorte, 237 répondaient aux critères d'inclusion dont 67 (28%) présentaient un pentafecta validé (PV). Les caractéristiques préopératoires entre les groupes étaient similaires. Avec un suivi médian de 51 mois, la survie globale à 5 ans était supérieure chez les patients présentant un PV 80.5% (IC95% 70.7-91.7) vs 46.5% (IC95% : 38.3-56.5) pour PNV. La survie sans récidive à 5 ans était de 76.1% (IC 95% : 65.3-88.6) vs 50.4% (IC 95% : 41.8-60.7) dans les groups PV et PNV respectivement ($p < 10^{-10}$ (0.0001), on observait également une meilleure survie sans métastase à 5 ans (p< 0.05). Nous n'avons pas retrouvé dans notre population de facteurs prédictifs préopératoires d'échec du pentafecta (tous les p > 0.05).

Conclusion : Le pentafecta que nous avons proposé a montré que sa validation avait un impact statistiquement significatif sur les résultats oncologiques à long terme pour la survie sans récidive et la survie globale. Il pourrait être utilisé à l'avenir pour évaluer la prise en charge des patients atteints de TVES-HR. Néanmoins, une validation externe sur une plus grande population reste nécessaire pour confirmer son applicabilité.

Mots clés : Tumeurs des voies excrétrices supérieures, Haut risque, Pentafecta, néphrourétérectomie totale

Jury :

Président du Jury :	Professeur Franck BRUYERE
Directeurs de thèse :	Docteur Benjamin PRADERE ; Docteur Pierre BARRON
Membres du Jury :	Professeur Romain MATHIEU
	Professeur Matthias BÜCHLER
Date de soutenance :	29/10/2021