Traffic assignment algorithms for planning a mass vehicular evacuation

Houssein Alaeddinea,b, Kamal Serrhinia, Emmanuel Néronb, Mindjid Maiziaa

aLaboratoire Citères de l'université de Tours
bLaboratoire Informatique de l'université de Tours

Tours, France

Abstract

Dynamic network flow models form a wide area in evacuation domain. Within a time horizon, they aim to meet several problems as maximizing flow (maximum dynamic flow), compliance with evacuation priorities (lexicographic maximum dynamic flow), minimizing total clearance time (quickest dynamic flow) and maximizing flow for every discrete time step (universal dynamic maximum flow). The strategy of automatic construction of paths constitutes the foundation structure of these models, in other words when a predetermined set of paths among origins-destinations must be respected then flow models do not achieve the desired goal. We develop here a traffic assignment algorithms, based on the system optimum hypothesis, which allow to observe predetermined evacuation paths with flow-dependent transit time on arcs. Also we will show in this paper the importance of compliance with evacuation priorities and routes in achieving a non-preemption building evacuation.

Keywords:

routing, evacuation, traffic assignment, optimization, linear programming, meta-heuristic

1. Introduction

Flow variation over time is applied to various problems in network such as air traffic control, production systems, evacuation, etc. Two aspects distinguish dynamic flow from a static one, first the flow on arcs may change over time and second the flow does not traverse the network instantly, but requires a certain amount of time to cross each arc. Dynamic flow problem is traditionally solved by a time-expanded network, introduced by Ford and Fulkerson \cite{17}, that contains a copy of the static network for each discrete time step \(t \in \{0,1,\ldots,T-1\}\) where \(T\) is the number of time steps (determined from an evacuation time horizon) during which the evacuation process must be executed1. In other words, travel time on each arc is converted to time steps and no flow is allowed to enter the network unless its last particle (e.g. vehicle) reaches its destination at the latest at \(T\). Ford-Fulkerson assumed journey times and capacities of arcs as constants.

Given a static graph \(G = (N,A)\), a time-expanded graph \(G_{T-1} = (N_{T-1},A_{T-1})\) is built so that \(N_{T-1} = \{j(t) : j \in N, t \in \{0,1,\ldots,T-1\}\}\) and \(A_{T-1} = \{(i(t),j(t+\tau_{i,j})) : i \in N, j \in N, t \in \{0,\ldots,T-1-\tau_{i,j}\}\}\) respectively represent the set of nodes and the set of arcs, with \(\tau_{i,j}\) indicating the travel time on arc \((i,j)\). Fleischer \cite{14} showed that dynamic maximum flow problem during \(T\) is a classical problem of maximum flow from source \(s(0)\) to destination \(p(T-1)\). Time-expanded graph has \(T\) copies of each source node and each destination node. Moreover this network of multiple sources-destinations may be converted to a single source-destination network. Time-expanded networks are useful here: the journey time on arcs remains implicit and problems that are traditionally solved in a static network can also be solved in a dynamic network.

The capacity of arc \((i,j)\) in time-expanded network is expressed in the maximal number of units which can pass through this arc by unit of time (e.g. 20 veh/min). The time period between two time steps \(t\) and \(t+1\) is given by \(\delta\). For example, for \(\delta = 15\) seconds and an arc \((i,j)\) with \(\tau_{i,j} = 2\), each unit of a flow crossing \((i,j)\) will take 30 seconds. The constant travel time on arc \((i,j)\) is computed with a flow equal to the capacity of this arc (flow-independent time). The number of time steps \(T\) is computed by dividing the given horizon time by \(\delta\). A too low value of \(\delta\) results in a huge graph with fractional capacities of arcs (for instance, \(u_{i,j} = 0.38888\text{veh/sec}\)), and it is not practical to work with such a network. Similarly, a very high value of \(\delta\) has the drawback to result in a graph with fractional travel times (for example, \(\tau_{i,j} = \frac{3\text{min}}{15}\)). Such a system is inefficient because it no longer depends on the properties of flow. Therefore, the value of \(\delta\) is a compromise between model realism and model complexity \cite{22}. The other drawback of the time-expanded network lies in the discrete nature of the time step. The construction of time-expanded network is based on a fixed number of time units \(T\) computed from the evacuation time horizon (as mentioned above). Each node in the static graph is copied \(T\) times in the time-expanded network, however arcs do not comply with this principle but are copied based on travel time through the arcs (expressed in number of time units). In other words, this type of network is no longer valid if travel time on arcs depends on flow.

In this type of network, as we mentioned previously, \(\tau_{i,j}\) is the maximum travel time (upper bound) on the arc \((i,j)\) i.e. in the presence of the maximum number of vehicles (equal to the capacity). Kohler et al. \cite{27} varied

1 A period of time is the real time between two successive time steps. For example, for a time horizon equals to 18 seconds and a time period equals to 3 seconds, the value of \(T\) is equal to \(6\). Concretely, steps 0, 1, 2, 3, 4, 5 and 6 respectively correspond to the lower bounds of the time intervals \(0,3\), \(3,6\), \(6,9\), \(9,12\), \(12,15\), \(15,18\) and \(18,21\).
journey times on arcs with flow in order to overcome this drawback. However, this variability of time is discrete (linear function per 3 pieces or intervals), i.e., the travel time on arc can relate to only three distinct values. Increase the number of pieces leads to an impracticable too large graph.

Finally, the complexity of dynamic flow algorithms based on time-expanded network is pseudo-polynomial i.e. the execution time of these algorithms is a polynomial function of the number of time periods T [25]. To remove the execution time of these algorithms is a polynomial function on time-expanded network is pseudo-polynomial i.e. the number of pieces leads to an impracticable too large graph.

A path decomposition algorithm (see [11]), where the travel time on path p^i is given by $\tau(p^i) = \sum_{a \in p^i} T_a$ and the principle of flow temporally repeated is to inject f^i units of flow on p^i at each time step $t \in [0, 1, \ldots, T - 1]$.

The travel time on path p^i is given by $\tau(p^i) = \sum_{a \in p^i} \tau_a$ and the principle of flow temporally repeated is to inject f^i units of flow on p^i at each time step $t \in [0, 1, \ldots, T - 1] - \tau(p^i)$.

It's well known as mentioned previously, that any multi-sources problem can be transformed into a single source problem by creating a super-source. Nevertheless this transformation is non-feasible in the flow temporally repeated approach. Firstly, the computed amount of flow from some sources may be equal zero (network saturated), and secondly, a source with a small number of vehicles does not require the entire time horizon to evacuate its vehicles. Many authors addressed the flows over time in network offering different efficient approaches for different problems (dynamic maximum flow [17, 16, 14], universal dynamic maximum flow [18, 25, 29, 38, 25, 12, 31, 15], quickest dynamic flows [13, 10, 8, 25], lexicographic dynamic maximum flow [29, 22, 23, 25]).

The foundation structure of these models is based on the automatic construction of paths, therefore if a predetermined set of paths among origins-destinations must be observed then flow models do not achieve the desired aim.

In contrast to flow models, traffic assignment systems deal in a more realistic manner with traffic in network. Generally they are divided into two different systems: the system optimum and the user or nash equilibrium [37] [34] [7] [33]. Widely studied in the literature dedicated to transport and its applications, these two types of systems have also been used for managing traffic during a massive emergency evacuation. These models predict, optimize and plan traffic operations, where evacuees behavior in terms of choice of routes is taken into account by specific constraints. Dynamic traffic assignment models can be used to estimate the network load over time depending on its request. They are characterized by two interdependent elements: route choice and dynamic network loading. Route selection methods predetermine the evolution of flow on the roads, while dynamic network loading describes the outflow and the spread of flow through the network [24] [26] [6] [32]. During the evacuation, selfish drivers attempt to switch from a road to another in order to minimize their travel times. The user equilibrium system, first principle of Wardrop [37], states that travel times on used routes connecting an origin-destination pair are equal and minimal, i.e., no driver can unilaterally reduce his/her travel time by shifting to another route (reaching steady state). As it’s well known, this system used by transport planners for estimating and preventing network congestion does not minimize the total clearance time. In contrast, Wardrop’s second principle states that travelers cooperate with each other in order to minimize the total travel time and to ensure a traffic without congestion (System Optimum). Drivers in this system are informed about the paths to be taken. Obviously this is not a behaviorally realistic system, but it can be a useful traffic management tool for transport planners in order to minimize the total travel cost and therefore achieve an optimum social equilibrium [30].

Stepanov and Smith [35] developed a traffic assignment model for the evacuation problem, which minimizes the total clearance time, total distance and traffic-jams. Given a set of candidate paths between each pair origin-destination, the integer linear model aims, under the objectives mentioned previously, to find one egress route for each origin. Bretschneider and Kimms [9] considered a mixed-integer heuristic approach, based on the time-expanded network, for reorganizing traffic during an evacuation process. The main objective in that model is to allow people to leave the dangerous area in a minimum time. Lim et al. [28] presented a flow scheduling/optimization model for maximizing and scheduling the flow entering the evacuation network. The transit times on road links are estimated based on the peak rush hour travel time on a major highway.

After synthesizing the literature about the modeling of an evacuation problem, we present in this paper a model, based on the system optimum hypothesis, for the evacuation of population exposed to natural disasters. A linear program and a meta-heuristic are implemented to compute an evacuation plan with a minimum total clearance time. We study here the dynamic traffic assignment problem from scheduling side where at each time slot θ we evacuate by priority order the maximum number of vehicles from each building not yet completely evacuated. Predetermined paths among buildings and shelters are observed and a traffic model (Greenshield's model [21], polynomial model [5], etc.) is adopted for computing the flow-dependent time on arcs. We assume, in order to simplify this paper, the existence of a vehicles pursuit model (see [1]) which avoids the occurrence of overlap in the evacuation network. Indeed this overlap between successive time intervals arises as a result of the variation of sources of flows over time. That model which traces the paths of vehicles aims to compute the earliest departure times of buildings while avoiding any traffic-jams to occur in the network. The total duration of the discharge is provided by our model and we will show in this paper the importance of compliance with evacuation priorities and routes in order to achieve a non-preemption building evacuation.

2. Graph construction

Let us consider a priority list of n buildings to be evacuated towards a set of m shelters S via a transportation network $G = (N, A)$ established for this purpose.

2. This paper is a part of STOM (Spatio-Temporel Optimization Model for the evacuation of people exposed to natural disasters) model developed in ACCELL project funded by Région Centre and FEDER, France.
Each building $B_i, i \in \{1, ..., n\}$ is defined by a number of vehicles v_i to be evacuated. Each shelter $S_j, j \in \{1, ..., m\}$ is defined by its capacity of vehicles c_j. We associate one or more shelters to each building B_i and we denote by H_i the set of these shelters. A set of K-best paths $K_{i,j}$ is considered computed between each building B_i and each shelter $S_j \in H_i$. We denote by $v_{i,j}$ and $\eta_{i,j}$ successively, the number of vehicles to be evacuated and the dimension of the set of paths $K_{i,j}$ from B_i to $S_j \in H_i$. Finally the transportation network $G = (N, \mathcal{A})$ among buildings and shelters is established. We define $\phi_i, i \in A$, the capacity of the road link l expressed in vehicles per unit of time (veh/h, etc.). This capacity is computed by a traffic model based on free-flow speed, maximal density and number of lanes [19] [5].

We represent the k-th-path of dimension q connecting B_i to S_j by the vector of arcs $A_{e_i,j}^k := (e, ..., 1, ..., y) \in \mathcal{A}^q_1$. Since the graph G corresponds to specific paths, which have been predetermined, connecting buildings to shelters associated, the next equality can be demonstrated:

$$\bigcup_{i=1}^{n} \bigcup_{j \in H_i}^{\eta_{i,j}} \bigcup_{k=1}^{K_{i,j}} A_{e_i,j}^k = \mathcal{A}$$

We define a new graph $G^* = (N^*, \mathcal{A}^*)$ extended from G and which includes in addition to N and \mathcal{A}, two virtual nodes s, p, a sub-set of virtual nodes M of dimension $\sum_{j=1}^{m} |H_j|$ including one node $H_{j,i}$ by each safety point S_j associated to each building B_i, a sub-set of virtual arcs between s and M which represent the maximum numbers of vehicles that may be evacuated from buildings to safety points, a sub-set of arcs of dimension $\eta_{i,j}$ between each node $H_{j,i} \in M$ and B_i, and finally a sub-set of virtual arcs among shelters and p which represent the capacities of shelters in terms of vehicles.

The sub-set of arcs between s and M is built such that each shelter $S_j \in H_j$ associated to $B_i, i \in \{1, ..., n\}$ has a virtual arc, this is the arc between s and $H_{j,i}$. The weight (capacity) given for the arc $(s, H_{j,i})$ is the maximum number that may be evacuated from building B_i to shelter S_j associated. This weight is the minimum value between $r_{i,j}$, the remaining vehicles to be evacuated from B_i to S_j, and $H_{j,i}$, the capacity of paths connecting B_i to S_j.

In the new graph G^*, M is necessary firstly, to define the maximum number of vehicles that may be evacuated from buildings at each time slot, and secondly, to know the number of vehicles evacuated on paths connecting buildings to shelters associated. The figure 4 illustrates the new graph G^*. It should be noted that in this figure the weights on arcs $(s, H_{j,i})$ correspond to capacity, while those on $(H_{j,i}, B_i)$ correspond to flow.

3. Problem formulation

An evacuation plan aims to fix for each building its departure times and the paths for reaching its destinations. The computation of this plan is based on two pairs of concepts (time slot, flow) and (time interval, flow rate). The first pair focuses on a chronological evacuation according to a priorities list of buildings. In a complementary manner, the second pair is based on computing departure and arrival times in order to avoid any overlap to occur in the network among successive time slots.
We are interested here only to present the evacuation scheduling optimization system (time slot, flow) which is mainly subjected to the evacuation priorities of buildings, the destinations of evacuation and the K-best paths connecting each building to each shelter associated.

Notation:
- \(i \): an index for buildings (population sources) \(B_i \)
- \(v_i \): number of vehicles of \(B_i \)
- \(j \): an index for shelters (destinations) \(S_j \)
- \(c_j \): capacity of \(S_j \)
- \(k \): an index for \(k \)-th best path
- \(\theta \): an index for time slot
- \(\Phi_{i,j}^k \): capacity of arc \(i \) at time slot \(\theta \)
- \(l \): road link (arc)
- \(\phi_{i,j}^k \): flow on arc \(l \) at time slot \(\theta \)
- \(\mathcal{H}_{j,i} : B_i \rightarrow S_j \) (\(B_i \) is associated to \(S_j \))

Decision variables:
- \(x_{i,j,k} \): number of vehicles evacuated from building \(i \) to safety point \(j \) using the \(k \)-th path connecting \(B_i \) and \(S_j \) at time slot \(\theta \)
- \(\phi_{i,j}^k \): number of vehicles transiting on arc \((i,j) \) at time slot \(\theta \)

Auxiliary variables:
- \(e_{i,\theta} \) = \[\begin{cases} 1 & \text{if } B_i \text{ is effectively evacuated, completely} \\ 0 & \text{or partially, at time slot } \theta \end{cases} \]

Parameters:
- \(\beta_{i,j} \) = \[\begin{cases} 1 & \text{if } B_i \text{ is connected to } S_j \\ 0 & \text{otherwise} \end{cases} \]
- \(\alpha_{i,j,k,l} \) = \[\begin{cases} 1 & \text{if } l \in A_{r} \cap c_{i,j}^k \\ 0 & \text{otherwise} \end{cases} \]

4. Evacuation model

During a flooding event, buildings that are located in dangerous areas have different level of hazard i.e. there are zones that must be evacuated before another ones and so on. In addition, being the transport network does not enable a simultaneously evacuation of all people we evacuate buildings by time slots according to a established priorities list. Moreover, the evacuation of each building must be of minimum duration and cannot be interrupted (non-preemption). The problem addressed here is in the domain of optimal routing problems where the aim goal is to minimize the total clearance time. We approach this problem via a multi-objective scheduling optimization model.

The strategy applied in this model to meet the objectives stated above is to maximize lexicographically the flow outgoing from sources. Moreover as it will be shown, the compliance with predetermined paths will contribute to achieve a sequence of evacuation time slots of each building. Capacity on roads depends on slot time unit i.e. how many vehicles can cross each road by time unit (for instance 15min). This capacity, as we mentioned previously, is computed by a traffic model based on the density, the free-flow speed and the number of lanes of each road.

In dynamic flow problems, discretization plays a pivotal role in the evacuation modeling. A very small time slot (for example, minute or second) increases the accuracy of the model but enlarges the size of graph and thus the computational complexity of the solution algorithms [22]. The difference between a large and a big time slot is the fact that transit times on roads that are computed in terms of time slots don’t depend on flow. Moreover vehicles flow rate on a path cannot be depending on flow rate of minimum arc due to sharing arcs among paths from different sources. Therefore vehicles need a period equal to slot time unit to exit each source in order to avoid any congestion on the network. For example in the temporarily repeated flow, for a time unit of 15 minutes, the evacuation of a building with 10 vehicles requires 15 minutes plus the flow-independent journey time of the last vehicle.

The accuracy of a model does not necessarily increase with a small time slot. Here we give an example showing that slot of half hour is preferable than that of one minute in terms of clearance time. The figure 5 makes a comparison between time step (half hour) and time step (minute). We remark that in time step half hour, vehicles of \(B_1 \) and \(B_2 \) can be evacuated in 30 minutes. While in time step minute, \(B_1 \) needs 15 minutes and then \(B_2 \) takes 30 minutes. It should be noted that if \(B_2 \) has a higher priority than \(B_1 \) or if they have both the same priority then the total evacuation times are identical for the two cases (half hour and minute). In this comparison the transit times on arcs are not considered.

Figure 5: Preference of time step half hour relative to time step minute
minute is due to the fact that parallel evacuation ensuring in the case of slot of half hour is missed in the other case. This parallelism can be kept in the second case if we start evacuating B_2 firstly, where as we see that the capacity of path from B_1 is twice that of path from B_2.

The number of paths of buildings plays an essential role in the evacuation. Indeed, the total number of slots decreases when the number of available paths is high. To further reduce the number of slots, and in the case of buildings with the same level of priority, the model first evacuates buildings with few roads. Figure 6 shows the importance of this strategy in terms of reducing the number of slots and adding an element of fairness to the flow assignment model.

In this figure we consider the priorities list $[B_1, B_2]$. While B_1, with 700 vehicles to evacuate, has two paths to shelter B_1, the building B_2 has only one way to evacuate its 600 vehicles (part a, figure 6). We assume B_1 and B_2 have the same evacuation priority. The part (b) shows the evacuation scheduling (3 time slots) of B_1 and B_2 regardless of the number of paths, while part (c) illustrates not only the parallel evacuation of two buildings, but also the reduction of the number of time slots.

![Figure 6: Number of paths; weight on arcs : capacity](image)

5. Lexicographic maximum traffic assignment

The lexicographical maximum flow algorithm presented here is a slightly modified version of one developed in a previous paper [2] using the push-relabel algorithm\(^3[20]\). Being the difficulty to integrate the constraint of compliance with predetermined paths, as we have shown in that paper, a linear program subjected to this constraint is developed here. This program is an alternative solution of the push-relabel linear program subjected to this constraint is developed here. It should be noted that the linear program execution time is faster than that of push-relabel implemented in Boost library\(^4\).

The principle of the lexicographical maximum flow algorithm is to send at each time slot by order of priorities, the maximal number of vehicles from each building not yet completely evacuated.

In order to simplify the algorithms developed in this paper, we assume that each building is associated to one and only one shelter. This assumption does not eliminate the possibility for several shelters, but if a building B_i must be evacuated to several shelters ($|B_i| > 1$), then this building will be divided into $|B_i|$ buildings $|B_{i1}, \ldots, B_{in}|$.

Given a sub-set of p buildings $|B_{11}, \ldots, B_{1p}| \subseteq \{B_1, \ldots, B_n\}, 1 \leq p \leq n$, the strategy of the lexicographical maximum flow algorithm is based on the determination of the lexicographical maximal flow (Lex-Max) from the building B_p. Note that building B_p corresponds to a building $B_i \in \{B_1, \ldots, B_n\}$. Initially equal to the minimum between r_{ij} and \hat{r}_{ij}, Lex-Max(B_p) decreases in the event of impact on the lexicographical maximal flows from previous buildings B_q (highest priorities, $1 \leq q < p$) determined at previous iterations. The linear program (Cplex) described in the following is called in each iteration p at each time slot θ with a number of buildings p increased by one unit. Note that at first time slot the number of iterations is n and $B_1 \equiv B_1$, $B_2 \equiv B_2, \ldots , B_{n-1} \equiv B_{n-1}$, $B_n \equiv B_n$.

We define the graph G^*_p which corresponds only to the buildings not yet completely evacuated. At first time slot, $G^*_1 = G^*_{\emptyset}$.

Moreover, we define the sub-graph G^*_q which corresponds only to the buildings not yet completely evacuated. At first time slot, $G^*_1 = G^*_{\emptyset}$.

At each step p in each time slot θ, we build G^*_p tagging the capacity of the arc (s, R_{ij}) with the maximum number of vehicles that may be evacuated from B_i to R_j (B_i corresponds here to R_{ij}). As we mentioned above, this maximum number represented in the graph (see figure 4) by $\hat{\phi}_{R_{ij}}$, is equal to the minimum value between r_{ij} et \hat{r}_{ij}. Also the maximum number of vehicles that may be evacuated through Arc_{ij} (and which is represented by $\hat{\phi}_{R_{ij}}$, in the graph) is equal to $\min_{k} n_{ij} R_{ij}$. Besides, the capacity of each arc (s, R_{ij}) (B_i corresponds to R_{ij}) determined at step q.

We initialize Lex-Max(B_{ij}) to $\hat{\phi}_{s,R_{ij}}$ (B_i corresponds here to R_{ij}), then we decrease this value if the evacuation priorities may be violated. This potentially violation is detected when the sum of flow assigned from all buildings in graph G^*_q is lower than the sum of the lexicographical maximal flows of these buildings, which is translated by the next equation:

$$\sum_{q=1}^{p} \Phi_{s,R_{ij}} < \sum_{q=1}^{p} \hat{\phi}_{s,R_{ij}}$$

where B_i corresponds to R_{ij}, $\forall 1 \leq q \leq p$.

In this case, Lex-Max(B_{ij}) decreases and takes a new value: this is the difference between the flow assigned from all buildings and the lexicographical maximal flows of previous

\(^3\) An efficient approach for computing maximum flow in a graph
\(^4\) www.boost.org
buildings only.

\[
\hat{\Phi}_{r,\mathcal{M}_i,j}\| = \sum_{q=1}^{p-1} \Phi_{r,\mathcal{M}_i,j,q} - \sum_{q=1}^{p-1} \Phi_{r,\mathcal{M}_i,j,q} - \sum_{q=1}^{p-1} \Phi_{r,\mathcal{M}_i,j,q} (3)
\]

where \(\mathcal{B}_i \) corresponds to \(\mathcal{B}_q \), \(1 \leq q \leq p - 1 \) and \(\mathcal{B}_p \) corresponds to \(\mathcal{B}_p \).

The linear program (CPLEX) is presented in the following. The objective function of this model is to maximize flow from \(\mathcal{B}_1, \ldots, \mathcal{B}_p \) subjected to three constraints. The first constraint for ensuring the conservation of flows, the second one for respecting the capacity of each arc and the last constraint for complying with predetermined evacuation routes.

Algorithm 1 Lexicographic maximum flow algorithm

1. procedure **FIND LEXICOGRAPHIC MAXIMUM FLOW**
 2. repeat
 3. Open a new time slot \(\emptyset \)
 4. \(r = 0 \) \(\triangleright \) Number of iterations
 5. \(\text{Sum} = 0 \)
 6. Let all the set of buildings not yet completely evacuated
 7. repeat
 8. \(r = r + 1 \)
 9. Take the priority building \(\mathcal{B}_i \) from \(\emptyset \) \(\triangleright \) \(\mathcal{B}_q = \mathcal{B}_i \)
 10. \(\text{Open} (\mathcal{B}_q) \) \(\triangleright \) \(\mathcal{B}_q \leftarrow \mathcal{B}_q \)
 11. \(\hat{\Phi}_{r,\mathcal{M}_i,j} = \text{Min}(r_{i,j}, \hat{\Phi}_{r,\mathcal{M}_i,j}) \) \(\triangleright \) Number of vehicles to be evacuated from \(\mathcal{B}_i \)
 12. \(\hat{\Phi}_{r,\mathcal{M}_i,j} = \text{Min}(r_{i,j}, \hat{\Phi}_{r,\mathcal{M}_i,j}) \), \(\forall k \leq n_{i,j} \)
 13. \(\hat{\Phi}_{r,\mathcal{M}_i,j} = \text{Compute the maximal flow from } \mathcal{B}_i \)
 14. \(\text{Flow} = \text{CPLEX}(\mathcal{P}) \) \(\triangleright \) Compute the maximal flow from \(\mathcal{B}_i \)
 15. if \(\text{Flow} > 0 \)
 16. \(\text{Sum} = \hat{\Phi}_{r,\mathcal{M}_i,j} \)
 17. \(\hat{\Phi}_{r,\mathcal{M}_i,j} = \text{Flow} - \text{Sum} \) \(\triangleright \) Compute a new Lex-Max from \(\mathcal{B}_i \)
 18. \(\text{end if} \)
 19. \(\text{end if} \)
 20. \(\mathcal{B}_q \text{ remove}(\mathcal{B}_i) \)
 21. \(\text{until } \mathcal{B}_q \neq \emptyset \)
 22. \(\text{if } \hat{\Phi}_{r,\mathcal{M}_i,j} < \text{Min}(r_{i,j}, \hat{\Phi}_{r,\mathcal{M}_i,j}) \) \(\triangleright \) If initial Lex-Max(\(\mathcal{P} \)) is decreased
 23. \(\text{Flow} = \text{CPLEX}(\mathcal{P}) \) \(\triangleright \) Definitive maximal flow respecting priorities at slot \(\emptyset \)
 24. \(\text{end if} \)
 25. \(\text{repeat} \)
 26. \(s_{i,j,k} = \hat{\Phi}_{r,\mathcal{M}_i,j} \) \(\forall k \in \{1, \ldots, n_{i,j}\} \)
 27. \(t_{i,j} = t_{i,j} - \hat{\Phi}_{r,\mathcal{M}_i,j} \)
 28. \(\text{num} = \text{Number of residual vehicles of } \mathcal{B}_i \)
 29. \(\text{All vehicles from all buildings are already evacuated} \)
 30. \(\text{end repeat} \)
 31. \(\text{end procedure} \)

The figure 7 provides an example of an evacuation network comprising five buildings to be evacuated. The established priorities list of these buildings is \(\{\mathcal{B}_2, \mathcal{B}_1, \mathcal{B}_4, \mathcal{B}_3, \mathcal{B}_5\} \). Note that the two buildings \(\{\mathcal{B}_4, \mathcal{B}_5\} \) constitutes in reality the same building, but as this latter must be evacuated to two shelters then we divided it here to two buildings. The input data of this example is illustrated in the figure 8. The K-minimum paths \((k = 2) \) between each origin-destination are computed by a multicriteria algorithm (transit time, capacity). However all or a set of these paths can be in some cases provided by the decision makers.

We are interested here to show the difference in results between the lexicographic maximum flow algorithm coupled with CPLEX and the same algorithm coupled with push-relabel. The disparity between these two results lies in the compliance level with predetermined paths. While this constraint is completely ensured in the linear program (see above, third constraint), the non-respect of predetermined paths is always existing in push-relabel despite the using of two strategies for limiting this problem: the first one is to restrict the capacities of shelters at each iteration (line 13, algorithm 1) and the second one involving the construction of a sub-graph at each iteration. It should be noted that the observation of predetermined paths automatically leads to the respect of destinations.

The table 4 shows the flows on arcs at first time slot injected by CPLEX, while the table 5 is an illustration of the allocation of flow carried out by push-relabel. This second table indicating the residual capacity of each arc at the first time slot proves the construction of new paths in order to maximize the flow in the network. During the evacuation of \(\mathcal{B}_4 \), push-relabel has built a new path \(\{a_{17}, a_{18}, a_{19}, a_{20}, a_{11}, a_{12}\} \) allowing to evacuate 200 vehicles from this building. It should be noted that if capacities on shelters are relaxed, push-relabel algorithm would have built the path \(\{a_{13}, a_{14}, a_{19}, a_{20}, a_{11}, a_{12}\} \) to evacuate 200 vehicles from \(\mathcal{B}_3 \) in addition to 100 vehicles evacuated from this building by its minimal path \(\{a_{13}, a_{14}, a_{15}, a_{16}\} \) (see figure 8).

Table 4: Assigned flow on arcs at first slot using lexicographic maximum flow algorithm coupled with CPLEX

<table>
<thead>
<tr>
<th>(\Phi)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>(a_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_2)</td>
<td>200</td>
<td>200</td>
<td>550</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_3)</td>
<td>0</td>
<td>0</td>
<td>350</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_4)</td>
<td>0</td>
<td>0</td>
<td>350</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_5)</td>
<td>0</td>
<td>0</td>
<td>350</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Assigned flow on arcs at first slot using lexicographic maximum flow algorithm coupled with push-relabel

<table>
<thead>
<tr>
<th>(q)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>(a_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_2)</td>
<td>200</td>
<td>200</td>
<td>550</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_3)</td>
<td>0</td>
<td>0</td>
<td>350</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_4)</td>
<td>0</td>
<td>0</td>
<td>350</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}_1 \to \mathcal{B}_5)</td>
<td>0</td>
<td>0</td>
<td>350</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The behavior of the lexicographic maximum flow
algorithm using CPLEX at the first time slot is given in the figure 9. Moreover the evacuation scheduling of buildings $\{B_2, B_1, B_4, B_5, B_3\}$ according to this approach is illustrated.
The assignment of flow in the evacuation network is subjected to the destinations capacities and the evacuation paths, two important elements forming the basis for the construction of evacuation plan. In other words, these two elements that have been predetermined according to several important criteria such as vulnerability, evacuees behavior, capacity, transit time, etc.) must be observed. A comparison in terms of number of slots and of number of vehicles evacuated at each time slot will be shown on a real graph in the last section.

6. New constrained Flow-Maximization algorithm

The execution time of the lexicographic maximum flow algorithm coupled with CPLEX, as we mentioned previously, is less than that of the same algorithm using push-relabel. However it's not possible to generate or update an evacuation plan in real-time using this approach and especially when the input data (buildings, paths, shelters) is almost huge. Hence the necessity for developing an efficient heuristic combining to some extent between the speed in execution and the maximization of flow in network.

In this section, we develop an heuristic method characterized by a predictive strategy for maximizing flow in network. We distinguish here between two definitions of paths: firstly the private path that does not share any arc with all other paths in the network, and secondly, the public path that has at least one common arc with one or more paths in the network.

The principle of this heuristic is based, at each iteration, on the estimation of the effects of choice of a path from the current building to be evacuated on the paths of lower priority buildings. This estimation is based on three elements: common arcs, residual number of vehicles per building and residual capacity of each path of lower-priority buildings.

The purpose of this predictive strategy is to force buildings to use first the private routes, then the public ones in a gradual manner according to the degree of estimated effect.

The predictive heuristic is presented by the algorithm 2. At each time slot (line 4, algorithm 2), the algorithm treats the set \(Y \) of buildings not yet completely evacuated (line 5, algorithm 2). Initially, \(Y = \{B_1, \ldots, B_n\} \). At each iteration in each time slot, the algorithm removes the priority building \(B_i \) from \(Y \), then checks if this building has more than one path (line 8, algorithm 2). If this is not the case, it gives a null effect to the unique path of \(B_i \) since this path is the only alternative for removing vehicles from this building. In case of

Table 6: Behavior of the lexicographic maximum algorithm using CPLEX at the first time slot

<table>
<thead>
<tr>
<th>(\mathcal{M}_{i,j})</th>
<th>(\phi_{i,j,M_{k,l}})</th>
<th>(\phi_{i,j,M_{k}})</th>
<th>(\phi_{i,j,M_{k,1}})</th>
<th>(\phi_{i,j,M_{k,2}})</th>
<th>(\phi_{i,j,M_{k,3}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{M}_{1,2})</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\mathcal{M}_{1,2,1,1})</td>
<td>700</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\mathcal{M}_{1,2,1,1,1})</td>
<td>550</td>
<td>500</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>(\mathcal{M}_{1,2,1,1,1,1})</td>
<td>550</td>
<td>500</td>
<td>-</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>(\mathcal{M}_{1,2,1,1,1,1,1})</td>
<td>550</td>
<td>500</td>
<td>300</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>(\mathcal{M}_{1,2,1,1,1,1,1,1})</td>
<td>550</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>600</td>
</tr>
</tbody>
</table>

Figure 9: Evacuation scheduling according to lexicographic maximum flow algorithm coupled with CPLEX

In connection with the foregoing, the figure 10 shows the evacuation of an unknown building by an illegitimate path, i.e. not belonging to the set of minimal paths predetermined. This scenario could be identified, because several arcs belonging to the unique minimal path of this building have zero flow. If some cases of non-compliance with paths can be detected by this way, however a non-zero flow is not necessarily synonymous of respect of minimum paths. Hence the need to use a verification process based on the third constraint of linear program (see previously).

Figure 10: Predetermined evacuation routes not respected

On the other side, the application of the lexicographic maximum flow algorithm coupled with CPLEX have ensured the use of only the routes predetermined for each building. The figure 11 illustrates this success for the unknown building.

Figure 11: Predetermined evacuation routes respected
multiple paths, it estimates the use effect of each path \(Arc_{i,j}^k \) of \(B_l \) on each path \(Arc_{i,j}^{k',j'} \) of each lower priority building \(B_{l'} \), \(\forall B_{l'} \in Y, \beta_{l',j'} = 1, \forall k' \in \{1, \ldots, \eta_{l',j'}\} \). This estimation is based both on the nonzero residual capacity \(\phi_l - \phi_l^0 \neq 0 \) of common arcs of paths \(Arc_{i,j}^k \) and \(Arc_{i,j}^{k',j'} \), and on the maximum number of vehicles \(\theta_{l,j}^k(B_l') \) that may be evacuated through \(Arc_{i,j}^{k',j'} \). Finally the use effect of route \(Arc_{i,j}^k \) on lower priority buildings takes the maximum value of:

\[
\frac{\phi_{l,j}^{k',j',i}}{\phi_l - \phi_l^0} \cdot \forall l \in Arc_{i,j}^k \land \phi_l - \phi_l^0 = \text{Min}_{\phi_l - \phi_l^0} \phi_l \land \phi_l^0 \neq 0 \land \forall B_{l'} \in Y \land \beta_{l',j'} = 1 \land \forall k' \in \{1, \ldots, \eta_{l',j'}\} \land \alpha_{i,j}^{k',j',i,l} = 1
\]

After estimating the use effect of each path from \(B_1 \) to the remaining buildings (lower priority), the algorithm gradually assigns the flow on the paths of \(B_1 \) (lines 21-32, algorithm 2) from least to most influential (line 22).

Algorithm 2 Predictive heuristic of maximization of flow

1: procedure PREDICTIVE MAXIMIZATION OF FLOW
2: \(\phi_l = 0 \)
3: repeat
4: \(\theta_l = 1 \quad \triangleright \text{opening of a new slot} \)
5: \(Y = (B_1, \ldots, B_n) \quad \triangleright \text{a set of buildings not yet completely evacuated} \)
6: for each \(B_l \in Y \) do
7: \(Y = Y \setminus \{B_l\} \quad \triangleright \text{Remove} \ B_l \text{ from} \ Y \)
8: if \(n_{l,j} > 1 \) then
9: for \(k = 1 \) to \(n_{l,j} \) do
10: \(\phi_l = 0 \quad \triangleright \text{if number of paths is greater than 1} \)
11: \(p = 0 \quad \triangleright \text{Effect initialized to zero} \)
12: if \(\phi_l - \phi_l^0 \neq 0 \) then
13: \(p = \text{Max}(p, \frac{\phi_{l,j}^{k',j',i}}{\phi_l - \phi_l^0} \cdot \alpha_{i,j}^{k',j',i,l}) \quad \triangleright \text{if the residual capacity is nonzero} \)
14: end if
15: end for
16: \(f = \frac{\phi_l}{\phi_l^0} \quad \triangleright \text{if the number of paths is equal to 1} \)
17: end for
18: \(f_{n_{l,j}} = 0 \quad \triangleright \text{if the number of paths is equal to 1} \)
19: end if
20: for \(i = 1 \) to \(n_{l,j} \) do
21: \(\phi_{l,j}^{k',j',i,l} \neq 0 \quad \triangleright \text{Take the road less influential} \)
22: \(f[i,k] = \text{Max}(f[i,1], \ldots, f[n_{l,j}]) \quad \triangleright \text{Assignment of flow} \)
23: \(f[i,k] = \text{Max}(f[i,1], \ldots, f[n_{l,j}]) + 1 \)
24: \(r^* = r_{l,j} \)
25: if \(\phi_{l,j}^{k',j',i,l} = 0 \) then
26: \(r_{l,j} = 0 \quad \triangleright \text{Assignment of flow} \)
27: \(r_{l,j} = r_{l,j} - \text{Min}_{\phi_l - \phi_l^0} (\phi_{l,j}^{k',j',i,l}) \quad \triangleright \text{Assignment of flow} \)
28: end if
29: \(t_{l,j} = r_{l,j} - \text{Min}_{\phi_l - \phi_l^0} (\phi_{l,j}^{k',j',i,l}) \)
30: for each \(l \in Arc_{i,j}^k \) do
31: \(\phi_l = \phi_l^0 + r^* - r_{l,j} \quad \triangleright \text{Assignment of flow} \)
32: end for
33: end for
34: end for
35: until \(\sum_{i=1}^{n_{l,j}} t_{l,j} = 0 \quad \triangleright \text{All buildings are totally evacuated} \)
36: end procedure

The application of the predictive heuristic to the graph in the figure 7 generates an assignment of flow to arcs for each time slot. At first slot, the computation of the choice effect of first path from \(B_2 \) on firstly, the first path of \(B_1 \), and secondly, the unique path of \(B_4 \) is respectively given by the two tables 7 and 8. Recall that \((B_2, B_1, B_4, B_3, B_5) \) is the established priorities list.

The effect choice of first and second path of \(B_2 \) on the paths of lower priority buildings is respectively given by: \(f[1][1] = 1 \) and \(f[2][2] = 0 \). This latter is null because there is no common arc between the second path from \(B_2 \) and the paths of lower priority buildings. Beside, the first path of \(B_2 \) shares on the one hand, the road links \(\alpha_2 \) and \(\alpha_3 \) of minimum residual capacity with the first path from \(B_1 \) and, on the other hand, the arc \(\alpha_5 \) of minimum residual capacity with the unique path of \(B_4 \).

This computation shows the predictive aspect of this heuristic for \(B_2 \) to first use its second way, and then the first one. This allows for \(B_1 \) to maximize its flow in this first time slot (see figure 9).

The abandonment of the predictive strategy in this heuristic converts this latter to a greedy algorithm i.e. choice effect of every path is considered null (not computed) and then the assignment of flow from each building \(B_l \) is performed by order of paths \(X_{i,j} \) connecting \(B_l \) to \(Y_j \). Accordingly, the execution time of the resulting algorithmic method is much shorter than that of the predictive heuristic. A comparison in terms of number of slots and number of vehicles evacuated at each time slot will be carried out in the next section.

<table>
<thead>
<tr>
<th>(l)</th>
<th>(f_{d_1}^{\phi_{d_1}, \phi_1})</th>
<th>(d_2)</th>
<th>(d_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(\phi_{d_1}^{\phi_{d_1}, \phi_1})</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>9</td>
<td>(\phi_{d_1}^{\phi_{d_1}, \phi_1})</td>
<td>350</td>
<td>350</td>
</tr>
</tbody>
</table>

Table 7: Estimation of choice effect of \(Arc_{2,1}^1 \) on \(Arc_{1,1}^1 \)

<table>
<thead>
<tr>
<th>(l)</th>
<th>(f_{d_1}^{\phi_{d_1}, \phi_1})</th>
<th>(d_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(\phi_{d_1}^{\phi_{d_1}, \phi_1})</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>(\phi_{d_1}^{\phi_{d_1}, \phi_1})</td>
<td>350</td>
</tr>
</tbody>
</table>

Table 8: Estimation of choice effect of \(Arc_{2,1}^1 \) on \(Arc_{4,1}^1 \)

The table 9 shows the assigned flow from each building by the predictive heuristic at the first time slot.

<table>
<thead>
<tr>
<th>(\phi_{s_i})</th>
<th>(\phi_{s_i, \phi_1})</th>
<th>(\phi_{s_i, \phi_2})</th>
<th>(\phi_{s_i, \phi_3})</th>
<th>(\phi_{s_i, \phi_4})</th>
<th>(\phi_{s_i, \phi_5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>([l_{1,2}])</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>([l_{2,1}])</td>
<td>550</td>
<td>500</td>
<td>0</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>([l_{2,1}])</td>
<td>550</td>
<td>500</td>
<td>0</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>([l_{2,1}])</td>
<td>550</td>
<td>500</td>
<td>0</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>([l_{2,1}])</td>
<td>550</td>
<td>500</td>
<td>0</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

Table 9: Predictive heuristic Behavior at the first time slot

The successive allocations by the predictive heuristic at different time slots results in the evacuation scheduling of buildings illustrated in the figure 12.
7. Applications and results

The study site on which the model is applied and tested is the valley of Tours\(^5\) (see [4]). The elaborated evacuation network corresponds to the 3-best paths between buildings and shelters (see [3]) and is characterized by: 13446 nodes, 22676 arcs, 9825 buildings grouped in 2753 buildings\(^6\) and 2 safety points. The figure 13 shows this area and the buildings to be evacuated to two shelters (ZRO\(^7\)), one in the North and other in the South. For reasons of clarity of the figures, we perform the tests here only on the center of this valley: city of Tours. The graph corresponding to this city is characterized by: 6754 nodes, 11270 arcs, 3975 buildings grouped in 1308 buildings and 2 shelters. The slot time unit is equal to 15 minutes and the evacuation priorities list is established according to several criteria (hazard level, dikes, etc.).

The next two figures 14 and 15 show successively the parallel evacuation of buildings to two shelters (North and South) and the continuity/discontinuity of flow from buildings according to the lexicographic maximum flow algorithm coupled with push-relabel.

The discontinuity of flow from buildings is due to the fact that evacuation paths are not observed i.e. push-relabel build a new paths in order to maximize the flow. We couple the lexicographic maximum flow algorithm with an integer linear program (CPLEX) enabling to maximize flow under the constraint of respect of paths. The resulting new approach allows also to evaluate the efficiency of the predictive heuristic in the maximization of flow in network.

The figures 16 and 17 illustrate the absence of discontinuity of flow from buildings using the lexicographic maximum flow algorithm coupled with CPLEX. In other words, they show the importance of compliance with predetermined evacuation paths in order to ensure a full flow continuity from buildings during the evacuation.

\(^{5}\) France 37

\(^{6}\) By assigning each building to the nearest network node

\(^{7}\) Zone de Regroupement et d’Orientation

\(x_{1,1,1,1} = 200, x_{1,1,2,1} = 350, x_{1,1,1,2} = 200\)

\(x_{2,1,1,1} = 150, x_{2,1,2,1} = 350\)

\(x_{3,2,1,2} = 300\)

\(x_{4,1,1,2} = 100\)

\(x_{5,2,1,1} = 600, x_{5,2,1,2} = 100\)
Finally, and since the predictive heuristic ensures the respect of priorities and paths, its evaluation will be performed only according to the number of evacuation time slots.

The following figure 18 shows the number of vehicles evacuated by time slots according to the following approach: lexicographic maximum flow algorithm (Push-relabel), lexicographic maximum flow algorithm (CPLEX), predictive heuristic of maximizing flow, and greedy heuristic.

Conclusion

In this paper we developed a traffic assignment model for planning a mass vehicular evacuation. Several algorithms (exact methods and heuristics) were presented and compared according to two aspects: the maximization of flow and the continuity of evacuation of buildings. We showed also the importance of traffic assignment models which take into consideration the predetermined evacuation routes relative to the flow models.

Acknowledgement

We would like to thank LA REGION CENTRE (France) and FEDER (Europe) for funding this research.

References

